[1]
Z.F. Fu, P. Liu, J.L. Ma, X.G. Zhao, H.W. Zhang, Novel series of ultra-loss microwave dielectrics: Li2Mg3BO6 (B= Ti, Sn, Zr), J. Euro. Ceram. Soc. 36 (2016) 625-629.
DOI: 10.1016/j.jeurceramsoc.2015.10.040
Google Scholar
[2]
J. Pei, Z.X. Yue, F. Zhao, Z.L. Gui, L.T. Li, Microwave dielectric ceramics of hexagonal (Ba1−xAx)La4Ti4O15 (A = Sr, Ca) for base station applications, J. Alloy Comp. 459 (2008) 390–394.
DOI: 10.1016/j.jallcom.2007.04.274
Google Scholar
[3]
H. Yamada, T. Okawa , Y. Tohdo, H. Ohsato, Microwave dielectric properties of BaxLa4Ti3 + xO12 + 3x (x = 0. 0–1. 0) ceramics, J. Eur. Ceram. Soc. 26 (2006) 2059–(2062).
DOI: 10.1016/j.jeurceramsoc.2005.09.060
Google Scholar
[4]
Y. Tohdo , K. Kakimoto, H. Ohsato, H. Yamada, T. Okawa, Microwave dielectric properties and crystal structure of homologous compounds ALa4Ti4O15 (A = Ba, Sr and Ca) for base station applications, J. Euro. Ceram. Soc. 26 (2006) 2039–(2043).
DOI: 10.1016/j.jeurceramsoc.2005.09.098
Google Scholar
[5]
I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks, J. Am. Ceram. Soc. 89 (2006) 2063–(2072).
DOI: 10.1111/j.1551-2916.2006.01025.x
Google Scholar
[6]
P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, Structure–microwave property relations in (SrxCa(1-x)n+1TinO3n+1, J. Euro. Ceram. Soc. 21 (2001) 1723–1726.
DOI: 10.1016/s0955-2219(01)00102-9
Google Scholar
[7]
C.J. Ball, B.D. Begg, D.J. Cookson, G.J. Thorogood, E.R. Vance, Structures in the system CaTiO3/SrTiO3, J. Solid State Chem. 139 (1998) 238–247.
DOI: 10.1006/jssc.1998.7836
Google Scholar
[8]
M.M. Elcombe, E.H. Kisi, K.D. Hawkins, T.J. White, P. Goodman, S. Matheson, Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3. 6Sr0. 4Ti3O10 and a refinement of Sr3Ti2O7, Acta Crystall. B47 (1991) 305–314.
Google Scholar
[9]
S. Qin, A.I. Becerro, F. Seifert, J. Gottsmann, J. Jiang, Phase transitions in Ca1-xSrxTiO3 perovskites: effects of composition and temperature, J. Mater. Chem. 10 (2000) 1609–1615.
DOI: 10.1039/b000623h
Google Scholar
[10]
C.H. Hsu, S.H. Tsai, Dielectric characteristics of Sr substitution on Ca0. 4Sm0. 4TiO3 ceramics at microwave frequency, Ceram. Int. 40 (2014) 10111-10114.
DOI: 10.1016/j.ceramint.2014.01.109
Google Scholar
[11]
P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, Structure-microwave property of Ca and Sr titanates, J. Euro. Ceram. Soc. 21 (2001) 2629-2632.
DOI: 10.1016/s0955-2219(01)00328-4
Google Scholar
[12]
C.H. Hsu, C.J. Haung, Preparation, Structural and Microwave Dielectric Properties of CaLa4(ZrxTi1-x)4O15 Ceramics, J. Alloys Compd. 587 (2014) 45-49.
DOI: 10.1016/j.jallcom.2013.10.168
Google Scholar
[13]
W.E. Courtney, Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators, IEEE Trans. Microwave Theory Tech. 18 (1970) 476-485.
DOI: 10.1109/tmtt.1970.1127271
Google Scholar
[14]
B.W. Hakki, P.D. Coleman, A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range, IEEE Trans. Microwave Theory Tech. 8 (1960) 402-410.
DOI: 10.1109/tmtt.1960.1124749
Google Scholar
[15]
B.D. Silverman, Microwave Absorption in Cubic Strontium Titanate, Phys. Rev. 125 (1962) 1921-(1930).
DOI: 10.1103/physrev.125.1921
Google Scholar
[16]
X.Y. Chen, S.X. Bai, W.J. Zhang, Low temperature sintering and microwave dielectric properties of Bi4B2O9-added 0. 25CaTiO3–0. 75(Li1/2Nd1/2)TiO3 ceramics, J. Alloys Compd. 541 (2012) 132–136.
DOI: 10.1016/j.jallcom.2012.06.037
Google Scholar