Dielectric Characteristics of (Ca0.2Sr0.8)3(ZrxTi1-x)2O7 Ceramics at Microwave Frequencies

Article Preview

Abstract:

(Ca0.2Sr0.8)3(ZrxTi1-x)2O7 (x = 0.02-0.1) ceramic prepared by the solid state method was investigated for its microstructure and microwave dielectric properties. The correlation between the microstructure and microwave dielectric properties was also investigated. By increasing x from 0.01 to 0.06, the dielectric constant and Q×f value of the specimen could be increased from 72 to a maximum of 74, and from 11000 GHz to a maximum of 18000 GHz, respectively. The εr value of 74, the Q×f value of 18,000 GHz, and the τf value of 418 ppm/oC were obtained for (Ca0.2Sr0.8)3(Zr0.06Ti0.94)2O7 ceramics sintering at 1520oC for 4h, and (Ca0.2Sr0.8)3(ZrxTi1-x)2O7 (x = 0.02-0.1) is proposed as a suitable material candidate for application in microwave ceramic temperature sensing antenna.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

392-398

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.F. Fu, P. Liu, J.L. Ma, X.G. Zhao, H.W. Zhang, Novel series of ultra-loss microwave dielectrics: Li2Mg3BO6 (B= Ti, Sn, Zr), J. Euro. Ceram. Soc. 36 (2016) 625-629.

DOI: 10.1016/j.jeurceramsoc.2015.10.040

Google Scholar

[2] J. Pei, Z.X. Yue, F. Zhao, Z.L. Gui, L.T. Li, Microwave dielectric ceramics of hexagonal (Ba1−xAx)La4Ti4O15 (A = Sr, Ca) for base station applications, J. Alloy Comp. 459 (2008) 390–394.

DOI: 10.1016/j.jallcom.2007.04.274

Google Scholar

[3] H. Yamada, T. Okawa , Y. Tohdo, H. Ohsato, Microwave dielectric properties of BaxLa4Ti3 + xO12 + 3x (x = 0. 0–1. 0) ceramics, J. Eur. Ceram. Soc. 26 (2006) 2059–(2062).

DOI: 10.1016/j.jeurceramsoc.2005.09.060

Google Scholar

[4] Y. Tohdo , K. Kakimoto, H. Ohsato, H. Yamada, T. Okawa, Microwave dielectric properties and crystal structure of homologous compounds ALa4Ti4O15 (A = Ba, Sr and Ca) for base station applications, J. Euro. Ceram. Soc. 26 (2006) 2039–(2043).

DOI: 10.1016/j.jeurceramsoc.2005.09.098

Google Scholar

[5] I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks, J. Am. Ceram. Soc. 89 (2006) 2063–(2072).

DOI: 10.1111/j.1551-2916.2006.01025.x

Google Scholar

[6] P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, Structure–microwave property relations in (SrxCa(1-x)n+1TinO3n+1, J. Euro. Ceram. Soc. 21 (2001) 1723–1726.

DOI: 10.1016/s0955-2219(01)00102-9

Google Scholar

[7] C.J. Ball, B.D. Begg, D.J. Cookson, G.J. Thorogood, E.R. Vance, Structures in the system CaTiO3/SrTiO3, J. Solid State Chem. 139 (1998) 238–247.

DOI: 10.1006/jssc.1998.7836

Google Scholar

[8] M.M. Elcombe, E.H. Kisi, K.D. Hawkins, T.J. White, P. Goodman, S. Matheson, Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3. 6Sr0. 4Ti3O10 and a refinement of Sr3Ti2O7, Acta Crystall. B47 (1991) 305–314.

Google Scholar

[9] S. Qin, A.I. Becerro, F. Seifert, J. Gottsmann, J. Jiang, Phase transitions in Ca1-xSrxTiO3 perovskites: effects of composition and temperature, J. Mater. Chem. 10 (2000) 1609–1615.

DOI: 10.1039/b000623h

Google Scholar

[10] C.H. Hsu, S.H. Tsai, Dielectric characteristics of Sr substitution on Ca0. 4Sm0. 4TiO3 ceramics at microwave frequency, Ceram. Int. 40 (2014) 10111-10114.

DOI: 10.1016/j.ceramint.2014.01.109

Google Scholar

[11] P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, Structure-microwave property of Ca and Sr titanates, J. Euro. Ceram. Soc. 21 (2001) 2629-2632.

DOI: 10.1016/s0955-2219(01)00328-4

Google Scholar

[12] C.H. Hsu, C.J. Haung, Preparation, Structural and Microwave Dielectric Properties of CaLa4(ZrxTi1-x)4O15 Ceramics, J. Alloys Compd. 587 (2014) 45-49.

DOI: 10.1016/j.jallcom.2013.10.168

Google Scholar

[13] W.E. Courtney, Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators, IEEE Trans. Microwave Theory Tech. 18 (1970) 476-485.

DOI: 10.1109/tmtt.1970.1127271

Google Scholar

[14] B.W. Hakki, P.D. Coleman, A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range, IEEE Trans. Microwave Theory Tech. 8 (1960) 402-410.

DOI: 10.1109/tmtt.1960.1124749

Google Scholar

[15] B.D. Silverman, Microwave Absorption in Cubic Strontium Titanate, Phys. Rev. 125 (1962) 1921-(1930).

DOI: 10.1103/physrev.125.1921

Google Scholar

[16] X.Y. Chen, S.X. Bai, W.J. Zhang, Low temperature sintering and microwave dielectric properties of Bi4B2O9-added 0. 25CaTiO3–0. 75(Li1/2Nd1/2)TiO3 ceramics, J. Alloys Compd. 541 (2012) 132–136.

DOI: 10.1016/j.jallcom.2012.06.037

Google Scholar