[1]
S.G. Tian, Y. C. Xue, Z. Zeng, D.L. Shu, J. Xie, Fracture mechanism of a nickel-based single crystal superalloy during creep at moderate temperature, Rare Metal Mater. and Eng. 43 (2014) 1092-1098.
DOI: 10.1016/j.msea.2013.11.049
Google Scholar
[2]
Q.Y. Xu, B.C. Liu, J. Yu, Progress on modeling and simulation of directional solidification of superalloy turbine blade casting, China Foundry. 9 (2012) 69-77.
Google Scholar
[3]
E. M. Francis, B. M. B. Grant, J. Q. Fonseca, P. J. Phillips, M. J. Mills, M. R. Daymond, M. Preuss, High-temperature deformation mechanisms in a polycrystalline nickel-base superalloy studied by neutron diffraction and eletron microscopy, Acta Mater. 74(2014).
DOI: 10.1016/j.actamat.2014.04.028
Google Scholar
[4]
J. Zhang, L. H. Lou, Directional solidification assisted by liquid metal cooling, J. Mater. Sci. Technol. 23(2007) 289-299.
Google Scholar
[5]
S. S. Hu, L. Liu, Q. W. Cui, T. W. Huang, J. Zhang, H. Z. Fu, Converging competitive growth in bicrystal of Ni-based superalloy during directional solidification, Acta Metal. Sin. 52(2016) 897-904.
Google Scholar
[6]
M. L. Clemens, A. Price, R. S. Bellows, Advanced solidification processing of an industrial gas turbine engine component, JOM. 55(2003) 27-31.
DOI: 10.1007/s11837-003-0156-1
Google Scholar
[7]
A. J. Elliott, T. M. Pollock, S. Tin, W. T. King, S. C. Huang, M. F. X. Gigliotti, Directionalsolidification of large superalloy castings with radiation and liquid-metal cooling: a comparative assessment. Metall. Mater. Trans. A., 35(2004).
DOI: 10.1007/s11661-004-0066-z
Google Scholar
[8]
L. Liu, T. W. Huang, J. Zhang, H. Z. Fu. Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification. Mater. Letters., 61 (2007) 227-230.
DOI: 10.1016/j.matlet.2006.04.037
Google Scholar
[9]
M. McLean, Directionally Solidified Materials for High temperature Service. London: The Metals Society, 1983: 170.
Google Scholar
[10]
P. N. Quested, M. McLean, Solidification Technology in the Foundry and Cast House, The Metals Society. London, 1983, pp.586-591.
Google Scholar
[11]
L. Liu, J. Zhang, J. Shen, T. W. Huang, H. Z. Fu, Advances in directional solidification techniques of superalloy. Mater. China. 29(2010) 1-8.
Google Scholar
[12]
S. Balsones, G. Feng, L. Peterson, J. Schaeffer, Microstructure and mechanical behavior of iquid metal cooled directionally solidified GTD-444, M. Rappaz, R. Triviedi (Eds. ), Solidification processes and microstructure A symposium, Wilfried Kurz Warrendale, T.M.S. 2004: 77-83.
Google Scholar
[13]
W. G. Zhang, L. Liu, X. B. Zhao, T. W. Huang, Z. H. Yu, M. Qu, H. Z. Fu, Effect of directional solidification cooling rates on dendrite spacings of DZ125 alloy under high thermal gradient, Rare Metals. 28(2009) 633-638.
DOI: 10.1007/s12598-009-0121-4
Google Scholar
[14]
W. G. Zhang, L. Liu, Solidification microstructure of directionally solidified superalloy under high temperature gradient. Rare Metals. 31(2012) 541-546.
DOI: 10.1007/s12598-012-0554-z
Google Scholar
[15]
D. H. Ma, Z. X. Yang, W. Y. Wang, S. J. He, W. H. Shu, R. C. Zhao, Y. G. Wang, G. M. Zhu, X. Wang, Study on the relationship between withdraw rate of directionally solidified DZ17 superalloy and structures and properties under liquid metal cooling process, Journal of Shanghai Iron & Steel Research, 1984, 4: 16-21. (In Chinese).
Google Scholar
[16]
Y. Z. Liang. Study on crystal orientation of columnar grain in directionally solidified nickel-based superalloy by X-ray diffraction back reflection Laue photograph method, Journal of Shanghai Iron & Steel Res. 1 (1986) 13-16.
Google Scholar