[1]
Agnieszka M. Wusatowska-Sarnek, Gautam Ghosh, Gregory B. Olson, et al. Characterization of the microstructure and phase equilibria calculations for the powder metallurgy superalloy IN100[J]. J. Materials Research, 2003, 18(11): 2653~2663.
DOI: 10.1557/jmr.2003.0371
Google Scholar
[2]
Eng R D, Evans D J. High strength HIP consolidated MERL76 disk[C]. Superalloy 1980. Pennsylvania: TMS: 491~500.
Google Scholar
[3]
Hyzak J M, Macintyre C A, Sundberg D V. Dual structure turbine disks via partial immersion heat treatment[C]. Superalloy 1988. Pennsylvania: TMS: 121~130.
DOI: 10.7449/1988/superalloys_1988_121_130
Google Scholar
[4]
Robert L. Dreshfield. Effects of heat treating PM Rene' 95 slightly below the γ¢ solvus[R]. NASA TM X-73663, (1977).
Google Scholar
[5]
Carlson D M. P/M AF115 dual property disk process development [C]. Superalloy 1980. Pennsylvania: TMS: 501~511.
Google Scholar
[6]
Kissinger R D. Cooling path dependent behavior of a supersolvus heat treated nickel base superalloy[C]. Superalloy 1996. Pennsylvania: TMS: 687~695.
DOI: 10.7449/1996/superalloys_1996_687_695
Google Scholar
[7]
Ducrocq C , Lasalmonie A, Honnorat Y. N 18, A new damage tolerant PM superalloy for hign temperature turbine discs[C]. Superalloy 1988. Pennsylvania: TMS: 63~72.
DOI: 10.7449/1988/superalloys_1988_63_72
Google Scholar
[8]
ATI technical data sheet. ATI 720 alloy. NI-826 VERSION 2 (1/20/2011).
Google Scholar
[9]
John Gayda. Alloy 10: A 1300F Disk Alloy[R]. NASA/TM—2000-210358.
Google Scholar
[10]
Joe Lemsky. Assessment of NASA dual microstructure heat treatment method utilizing Ladish SuperCooler™ cooling technology[R]. NASA/CR—2005-213574.
Google Scholar
[11]
Timothy P. Gabb, John Gayda, Jack Telesman, et al. Thermal and mechanical property characterization of the advanced disk alloy LSHR[R]. NASA/TM—2005-213645.
Google Scholar
[12]
Mitchell1 R J, Hardy M C, Preuss M, et al. Development of g' morphology in P/M rotor disc alloys during heat treatment [C]. Superalloy 2004. Pennsylvania: TMS: 361~370.
Google Scholar
[13]
Locq D, Marty M, Caron P. Optimisation of the mechanical properties of a new PM superalloy for disk applications[C]. Superalloy 2000. Pennsylvania: TMS: 395~403.
DOI: 10.7449/2000/superalloys_2000_395_403
Google Scholar
[14]
Soula A, Renollet Y, Boivin D, et al. Grain boundary and intragranular deformations during high temperature creep of a PM nickel-base superalloy[C]. Superalloy 2004. Pennsylvania: TMS: 387~394.
DOI: 10.7449/2008/superalloys_2008_387_394
Google Scholar
[15]
Eric S. Huron, Rebecca L. Casey, Michael F. Henry, et al. The influence of alloy chemistry and powder production methods on porosity in a PM nickel-base superalloy[C]. Superalloy 1996. Pennsylvania: TMS: 667~676.
DOI: 10.7449/1996/superalloys_1996_667_676
Google Scholar
[16]
David Ellis, Timothy Gabb, Anita Garg. Microstructural evaluation of KM4 and SR3 samples subjected to various heat treatments[R]. NASA/TM—2004-213140.
Google Scholar
[17]
J. -Y. Guédou, I. Augustins-Lecallier, L. Nazé, et al. Development of a new fatigue and creep resistant PM nickel-base superalloy for disk applications[c]. Superalloy 2004. Pennsylvania: TMS: 21~30.
DOI: 10.7449/2008/superalloys_2008_21_30
Google Scholar
[18]
Keh-Minn Chang. Supersolvus processing for tantalum-containing nickel base superalloys[P]. US5662749.
Google Scholar
[19]
Yeriomenko V I, Fatkullin O Kh, Grits N M, et al. EP962NP alloys is a new stage in development of Russian PM alloys[C]. HIP¢02, Moscow Russia, VILS: 93~99.
Google Scholar
[20]
Augustins-Lecallier, Isabelle. Conception de nouveaux superalliages Mdp base nickel pour disques de turbines. Diss. École Nationale Supérieure des Mines de Paris, 2011: 59~61.
Google Scholar