[1]
C.T. Sims, N.S. Stoloff, W.C. Hagel, superalloys II: high temperature materials for aerospace and industrial power. New York: Wiley; (1987).
Google Scholar
[2]
Z.L. Peng, S. Miura, Y. Mishima, High-Temperature Creep Behavior in Ni3(Al, Ta) Single Crystals with Different Orientations. Materials Transactions, JIM 38 (1997) 653-5.
DOI: 10.2320/matertrans1989.38.653
Google Scholar
[3]
J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Cobalt-base high-temperature alloys. Science 312 (2006) 90-1.
DOI: 10.1126/science.1121738
Google Scholar
[4]
S. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A. Singh, A new class of high strength high temperature Cobalt based γ–γ' Co–Mo–Al alloys stabilized with Ta addition. Acta Materialia 97 (2015) 29-40.
DOI: 10.1016/j.actamat.2015.06.034
Google Scholar
[5]
S.L. Shang, D. Kim, C. Zacherl, Y. Wang, Y. Du, Z.K. Liu, Effects of alloying elements and temperature on the elastic properties of dilute Ni-base superalloys from first-principles calculations. Journal of Applied Physics 112 (2012) 053515.
DOI: 10.1063/1.4749406
Google Scholar
[6]
Q. Yao, J. Sun, Y. Zhang, B. Jiang, First-principles studies of ternary site occupancy in the C15 NbCr2 Laves phase. Acta materialia 54 (2006) 3585-91.
DOI: 10.1016/j.actamat.2006.03.039
Google Scholar
[7]
S.R. Joshi, K.V. Vamsi, S. Karthikeyan, First principles study of structural stability and site preference in Co3(W, X). Eurosuperalloys 2014-2nd European Symposium on Superalloys and Their Applications 2014; 14.
Google Scholar
[8]
W.W. Xu, J.J. Han, Z.W. Wang, C.P. Wang, Y.H. Wen, X.J. Liu, Thermodynamic, structural and elastic properties of Co3X (X=Ti, Ta, W, V, Al) compounds from first-principles calculations. Intermetallics 32 (2013) 303-11.
DOI: 10.1016/j.intermet.2012.08.022
Google Scholar
[9]
Q. Yao, Y.H. Zhu, Y. Wang, Structural stability and elastic properties of L12 Co3(Ga, W) precipitate from first-principle calculations. Physica B-Condensed Matter 406 (2011) 1542-5.
DOI: 10.1016/j.physb.2011.01.065
Google Scholar
[10]
Q. Yao, Y. Wang, Y.H. Zhu, Elastic properties and electronic structures of L12 Co3(Ge, W). Physica B-Condensed Matter 405 (2010) 2753-6.
DOI: 10.1016/j.physb.2010.03.069
Google Scholar
[11]
M. Chen, C.Y. Wang, First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ'-Co3(Al, W). Scripta Materialia 60 (2009) 659-62.
DOI: 10.1016/j.scriptamat.2008.12.040
Google Scholar
[12]
C. Jiang, First-principles study of Co3(Al, W) alloys using special quasi-random structures. Scripta Materialia 59 (2008) 1075-8.
DOI: 10.1016/j.scriptamat.2008.07.021
Google Scholar
[13]
K. Tanaka, T. Ohashi, K. Kishida, H. Inui, Single-crystal elastic constants of Co3(Al, W) with the L12 structure. Applied Physics Letters 91 (2007) 181907.
DOI: 10.1063/1.2805020
Google Scholar
[14]
Q. Yao, H. Xing, J. Sun, Structural stability and elastic property of the L12 ordered Co3(Al, W) precipitate. Applied Physics Letters 89(2006) 161906.
DOI: 10.1063/1.2362574
Google Scholar
[15]
O. JENSRUD, Hardening mechanisms and ductility of an Al-3. 0 wt. % Li alloy. Aluminium-lithium alloys III. The Institute of Metals; 1986, pp.411-9.
Google Scholar
[16]
A. Van de Walle, P. Tiwary, M. De Jong, D. Olmsted, M. Asta, A. Dick. Efficient stochastic generation of special quasirandom structures. Calphad. 42 (2013) 13.
DOI: 10.1016/j.calphad.2013.06.006
Google Scholar
[17]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters 77(1996) 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[18]
P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Physical Review B 49 (1994) 16223.
DOI: 10.1103/physrevb.49.16223
Google Scholar
[19]
Y. Wang, J. Wang, W. Wang, Z. Mei, S.L. Shang, L. Chen, A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. Journal of Physics: Condensed Matter 22 (2010) 202201.
DOI: 10.1088/0953-8984/22/20/202201
Google Scholar
[20]
Q. Yao, S.L. Shang, Y.J. Hu, Y. Wang, Y. Wang, Y.H. Zhu, Z.K. Liu, First-principles investigation of phase stability, elastic and thermodynamic properties in L12 Co3(Al, Mo, Nb) phase. Intermetallics 78 (2016) 1-7.
DOI: 10.1016/j.intermet.2016.08.002
Google Scholar
[21]
S.L. Shang, Y. Wang, D. Kim, Z.K. Liu, First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al. Computational Materials Science 47 (2010) 1040-8.
DOI: 10.1016/j.commatsci.2009.12.006
Google Scholar
[22]
W.W. Xu, J.J. Han, Y. Wang, C.P. Wang, X.J. Liu, Z.K. Liu, First-principles investigation of electronic, mechanical and thermodynamic properties of L12 ordered Co3(M, W) (M = Al, Ge, Ga) phases. Acta Materialia 61 (2013) 5437-48.
DOI: 10.1016/j.actamat.2013.05.032
Google Scholar
[23]
J.H. Xu, T. Oguchi, A. Freeman, Solid-solution strengthening: Substitution of V in Ni3Al and structural stability of Ni3(Al, V). Physical Review B 36 (1987) 4186.
Google Scholar
[24]
Y.J. Wang, C.Y. Wang, A comparison of the ideal strength between L12 Co3(Al, W) and Ni3Al under tension and shear from first-principles calculations. Applied Physics Letters 94 (2009) 261909.
DOI: 10.1063/1.3170752
Google Scholar
[25]
M. Born, K. Huang, Dynamical Theory of Crystal Lattices. Clarendon press, oxford; (1954).
Google Scholar
[26]
S. Pugh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science: Series 7. Philos Mag 45 (1954) 823.
Google Scholar
[27]
D. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Materials science and technology 8 (1992) 345-9.
Google Scholar