First-Principles Investigation of Phase Stability, Elastic and Thermodynamic Properties in L12 Co3(Al,Mo,Ta) Phase

Article Preview

Abstract:

First-principles calculations have been performed to investigate the phase stability, elastic, and thermodynamic properties of Co3(Al,Mo,Ta) with the L12 structure. Calculated elastic constants showed that Co3(Al,Mo,Ta) is mechanically stable and possesses intrinsic ductility. Young’s and shear moduli of polycrystalline Co3(Al,Mo,Ta) were calculated using the Voigt-Reuss-Hill approach. It was found that the shear and Young’s moduli of Co3(Al,Mo,Ta) were smaller than those of Co3(Al,W). States density indicated the existence of covalent-like bonding in Co3(Al,Mo,Ta). Temperature-dependent thermodynamic properties of Co3(Al,Mo,Ta) could be described satisfactorily using the Debye-Grüneisen approach, including entropy, enthalpy, heat capacity and linear thermal expansion coefficient, showing their significant temperature dependences. Furthermore the obtained data could be employed in the modeling of thermodynamic and mechanical properties of Co-based alloys to enable the design of high temperature alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

438-445

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.T. Sims, N.S. Stoloff, W.C. Hagel, superalloys II: high temperature materials for aerospace and industrial power. New York: Wiley; (1987).

Google Scholar

[2] Z.L. Peng, S. Miura, Y. Mishima, High-Temperature Creep Behavior in Ni3(Al, Ta) Single Crystals with Different Orientations. Materials Transactions, JIM 38 (1997) 653-5.

DOI: 10.2320/matertrans1989.38.653

Google Scholar

[3] J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Cobalt-base high-temperature alloys. Science 312 (2006) 90-1.

DOI: 10.1126/science.1121738

Google Scholar

[4] S. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A. Singh, A new class of high strength high temperature Cobalt based γ–γ' Co–Mo–Al alloys stabilized with Ta addition. Acta Materialia 97 (2015) 29-40.

DOI: 10.1016/j.actamat.2015.06.034

Google Scholar

[5] S.L. Shang, D. Kim, C. Zacherl, Y. Wang, Y. Du, Z.K. Liu, Effects of alloying elements and temperature on the elastic properties of dilute Ni-base superalloys from first-principles calculations. Journal of Applied Physics 112 (2012) 053515.

DOI: 10.1063/1.4749406

Google Scholar

[6] Q. Yao, J. Sun, Y. Zhang, B. Jiang, First-principles studies of ternary site occupancy in the C15 NbCr2 Laves phase. Acta materialia 54 (2006) 3585-91.

DOI: 10.1016/j.actamat.2006.03.039

Google Scholar

[7] S.R. Joshi, K.V. Vamsi, S. Karthikeyan, First principles study of structural stability and site preference in Co3(W, X). Eurosuperalloys 2014-2nd European Symposium on Superalloys and Their Applications 2014; 14.

Google Scholar

[8] W.W. Xu, J.J. Han, Z.W. Wang, C.P. Wang, Y.H. Wen, X.J. Liu, Thermodynamic, structural and elastic properties of Co3X (X=Ti, Ta, W, V, Al) compounds from first-principles calculations. Intermetallics 32 (2013) 303-11.

DOI: 10.1016/j.intermet.2012.08.022

Google Scholar

[9] Q. Yao, Y.H. Zhu, Y. Wang, Structural stability and elastic properties of L12 Co3(Ga, W) precipitate from first-principle calculations. Physica B-Condensed Matter 406 (2011) 1542-5.

DOI: 10.1016/j.physb.2011.01.065

Google Scholar

[10] Q. Yao, Y. Wang, Y.H. Zhu, Elastic properties and electronic structures of L12 Co3(Ge, W). Physica B-Condensed Matter 405 (2010) 2753-6.

DOI: 10.1016/j.physb.2010.03.069

Google Scholar

[11] M. Chen, C.Y. Wang, First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ'-Co3(Al, W). Scripta Materialia 60 (2009) 659-62.

DOI: 10.1016/j.scriptamat.2008.12.040

Google Scholar

[12] C. Jiang, First-principles study of Co3(Al, W) alloys using special quasi-random structures. Scripta Materialia 59 (2008) 1075-8.

DOI: 10.1016/j.scriptamat.2008.07.021

Google Scholar

[13] K. Tanaka, T. Ohashi, K. Kishida, H. Inui, Single-crystal elastic constants of Co3(Al, W) with the L12 structure. Applied Physics Letters 91 (2007) 181907.

DOI: 10.1063/1.2805020

Google Scholar

[14] Q. Yao, H. Xing, J. Sun, Structural stability and elastic property of the L12 ordered Co3(Al, W) precipitate. Applied Physics Letters 89(2006) 161906.

DOI: 10.1063/1.2362574

Google Scholar

[15] O. JENSRUD, Hardening mechanisms and ductility of an Al-3. 0 wt. % Li alloy. Aluminium-lithium alloys III. The Institute of Metals; 1986, pp.411-9.

Google Scholar

[16] A. Van de Walle, P. Tiwary, M. De Jong, D. Olmsted, M. Asta, A. Dick. Efficient stochastic generation of special quasirandom structures. Calphad. 42 (2013) 13.

DOI: 10.1016/j.calphad.2013.06.006

Google Scholar

[17] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters 77(1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[18] P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Physical Review B 49 (1994) 16223.

DOI: 10.1103/physrevb.49.16223

Google Scholar

[19] Y. Wang, J. Wang, W. Wang, Z. Mei, S.L. Shang, L. Chen, A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. Journal of Physics: Condensed Matter 22 (2010) 202201.

DOI: 10.1088/0953-8984/22/20/202201

Google Scholar

[20] Q. Yao, S.L. Shang, Y.J. Hu, Y. Wang, Y. Wang, Y.H. Zhu, Z.K. Liu, First-principles investigation of phase stability, elastic and thermodynamic properties in L12 Co3(Al, Mo, Nb) phase. Intermetallics 78 (2016) 1-7.

DOI: 10.1016/j.intermet.2016.08.002

Google Scholar

[21] S.L. Shang, Y. Wang, D. Kim, Z.K. Liu, First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al. Computational Materials Science 47 (2010) 1040-8.

DOI: 10.1016/j.commatsci.2009.12.006

Google Scholar

[22] W.W. Xu, J.J. Han, Y. Wang, C.P. Wang, X.J. Liu, Z.K. Liu, First-principles investigation of electronic, mechanical and thermodynamic properties of L12 ordered Co3(M, W) (M = Al, Ge, Ga) phases. Acta Materialia 61 (2013) 5437-48.

DOI: 10.1016/j.actamat.2013.05.032

Google Scholar

[23] J.H. Xu, T. Oguchi, A. Freeman, Solid-solution strengthening: Substitution of V in Ni3Al and structural stability of Ni3(Al, V). Physical Review B 36 (1987) 4186.

Google Scholar

[24] Y.J. Wang, C.Y. Wang, A comparison of the ideal strength between L12 Co3(Al, W) and Ni3Al under tension and shear from first-principles calculations. Applied Physics Letters 94 (2009) 261909.

DOI: 10.1063/1.3170752

Google Scholar

[25] M. Born, K. Huang, Dynamical Theory of Crystal Lattices. Clarendon press, oxford; (1954).

Google Scholar

[26] S. Pugh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science: Series 7. Philos Mag 45 (1954) 823.

Google Scholar

[27] D. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Materials science and technology 8 (1992) 345-9.

Google Scholar