[1]
R.D. Noebe, R.R. Bowman, M.V. Nathal, Physical and mechanical properties of the B2 compound NiAl, Inter. Mater. Rev. 38 (1993) 193-232.
DOI: 10.1179/imr.1993.38.4.193
Google Scholar
[2]
D.B. Miracle, The physical and mechanical properties of NiAl, Acta Metall. Mater. 41 (1993) 649-684.
Google Scholar
[3]
R. Darolia, NiAl alloys for high-temperature structural applications, JOM 43 (1991) 44-49.
DOI: 10.1007/bf03220163
Google Scholar
[4]
H.E. Cline, J.L. Walter, The effect of alloy additions on the rod-plate transition in the eutectic NiAl-Cr, Metall. Trans. 1 (1970) 2907-2917.
DOI: 10.1007/bf03037830
Google Scholar
[5]
D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, J.D. Whittenberger, Processing and mechanical properties of in-situ composites from the NiAl-Cr and the NiAl-(Cr, Mo) eutectic systems, Intermetallics 3 (1995) 99-113.
DOI: 10.1016/0966-9795(95)92674-o
Google Scholar
[6]
H. Bei, E.P. George, Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy, Acta Mater. 53 (2005) 69-77.
DOI: 10.1016/j.actamat.2004.09.003
Google Scholar
[7]
H. Liu, W.D. Xuan, X.L. Xie, J.B. Yu, J. W, Z.M. Ren, Microstructure evolution and room temperature fracture toughness of directionally solidified NiAl–31Cr3Mo–0. 2Si near-eutectic alloy at different withdrawal rates, Mater. Sci. Eng. A 678 (2016).
DOI: 10.1016/j.msea.2016.10.002
Google Scholar
[8]
J.D. Whittenberger, S.V. Raj, I.E. Locci, J.A. Salem, Effects of Minor Alloying Additions on the Microstructure, Toughness, and Creep Strength of Directionally Solidified NiAl-31Cr-3Mo, In: K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen (Eds. ), Structural Intermetallics 2001, The Minerals, Metals and Materials Society, Warrendale, 2001, pp.775-784.
DOI: 10.1016/s0966-9795(99)00023-0
Google Scholar
[9]
H. Yasuda, I. Ohnaka, Y. Yamamoto, A. Wismogroho, N. Takezawa, K. Kishio, Alignment of BiMn crystal orientation in Bi-20 at% Mn alloys by laser melting under a magnetic field, Mater. Trans. 44 (2003) 2550-2554.
DOI: 10.2320/matertrans.44.2550
Google Scholar
[10]
P. Lehmann, R. Moreau, D. Camel, R. Bolcato, Modification of interdendritic convection in directional solidification by a uniform magnetic field, Acta Mater. 46 (1998) 4067-4079.
DOI: 10.1016/s1359-6454(98)00064-0
Google Scholar
[11]
X. Li, A. Gagnoud, Y. Fautrelle, Z. M. Ren, R. Moreau, Y.D. Zhang, C. Esling, Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field, Acta Mater. 60 (2012).
DOI: 10.1016/j.actamat.2012.02.019
Google Scholar
[12]
X. Li, A. Gagnoud, Y. Fautrelle, Z.M. Ren, R. Moreau, Influence of thermoelectric effects on the morphology of Al-Si eutectic during directional solidification under an axial strong magnetic field, J. Cryst. Growth 367 (2013) 94-103.
DOI: 10.1016/j.jcrysgro.2012.12.032
Google Scholar
[13]
J. Wang, Study on influence of interaction between thermoelectric currents and magnetic field during directional solidification of binary alloy, PhD Thesis, Shanghai University, (2014).
Google Scholar
[14]
C.J. Li, H. Yang, Z.M. Ren, W.L. Ren, Y.Q. Wu, On nucleation temperature of pure aluminum in magnetic fields, Prog. Electromagn. Res. Lett. 15 (2010) 45-52.
DOI: 10.2528/pierl10041412
Google Scholar