[1]
M. Gell, D.N. Duhl, A.F. Giamei, The development of single crystal superalloy turbine blades, Superalloys 1980, Warrendale, TMS, 205-214.
DOI: 10.7449/1980/superalloys_1980_205_214
Google Scholar
[2]
B.B. Seth, Superalloys - The utility gas turbine perspective, Superalloys 2000, Warrendale, TMS, 3-16.
DOI: 10.7449/2000/superalloys_2000_3_16
Google Scholar
[3]
K. Kawagishi, T. Yokokawa, T. Kobayashi, Y. Koizumi, M. Sakamoto, M. Yuyama, H. Harada, I. Okada, M. Taneike, H. Oguma, Development of low or zero-rhenium high-performance Ni-base single crystal superalloys for jet engine and power generation applications, Superalloys 2016, Warrendale, TMS, 115-122.
DOI: 10.1002/9781119075646.ch13
Google Scholar
[4]
J.R. Li, S.Z. Liu, Z.X. Shi, Y.S. Luo, X.G. Wang, Third generation single crystal superalloy DD9, J. Iron. Steel Res. 23 (2011) 337-340.
Google Scholar
[5]
J.R. Li, S.Z. Liu, X.G. Wang, Z.X. Shi, J.Q. Zhao, Development of a low-cost third generation single crystal superalloy DD9, Superalloys 2016, Warrendale, TMS, 57-63.
DOI: 10.1002/9781119075646.ch6
Google Scholar
[6]
X.G. Wang, J.R. Li, J. Yu, S.Z. Liu, Z.X. Shi, X.D. Yue, Tensile anisotropy of single crystal superalloy DD9, Acta Metal. Sin. 51 (2015) 1253-1260.
Google Scholar
[7]
D.M. Shah, A. Cetel, Evaluation of PWA1483 for large single crystal IGT blade applications, Superalloys 2000, Warrendale, TMS, 295-304.
DOI: 10.7449/2000/superalloys_2000_295_304
Google Scholar
[8]
Y. Wang, D. Wang, G. Zhang, L.H. Lou, J. Zhang, Characterization of tilt and twist low angle grain boundaries and their effects on intermediate-temperature creep deformation behaviour, Superalloys 2016, Warrendale, TMS, 757-762.
DOI: 10.1002/9781119075646.ch81
Google Scholar
[9]
Y.S. Zhao, J. Zhang, Y.S. Luo, G. Sha, D.Z. Tang, Q. Feng, Effect of Hf and B on transverse and longitudinal creep of a Re-containing nickel-base bicrystal superalloy, Superalloys 2016, Warrendale, TMS, 683-692.
DOI: 10.1002/9781119075646.ch73
Google Scholar
[10]
E.W. Ross, K.S. O' Hara, René N4: A first generation single crystal turbine airfoil with improved oxidation resistance, low angle boundary strength and superior long time rupture strength, Superalloys 1996, Warrendale, TMS, 19-25.
DOI: 10.7449/1996/superalloys_1996_19_25
Google Scholar
[11]
H. Tamaki, A. Yoshinari, A. Okayama, S. Nakamura, Development of a low angle grain boundary resistant single crystal superalloy YH61, Superalloys 2000, Warrendale, TMS, 757-766.
DOI: 10.7449/2000/superalloys_2000_757_766
Google Scholar
[12]
J.Q. Zhao, J.R. Li, S.Z. Liu, H.L. Yuan, M. Han, Effect of low angle grain boundaries on tensile properties of single crystal superalloy DD6 at 980 °C, Rare Metal Mat. Eng. 36 (2007) 2232-2235.
Google Scholar
[13]
J.R. Li, J.Q. Zhao, S.Z. Liu, M. Han, Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6, Superalloys 2008, Warrendale, TMS, 443-451.
DOI: 10.7449/2008/superalloys_2008_443_451
Google Scholar
[14]
Z.X. Shi, J.R. Li, S.Z. Liu, J.Q. Zhao, Transverse stress rupture properties of DD6 single crystal superalloy with twist low angle boundaries, J. Mat. Eng. (2009) 80-83.
Google Scholar
[15]
Z.X. Shi, J.R. Li, S.Z. Liu, J.Q. Zhao, M. Han, Microstructures of low angle boundaries of DD6 single crystal superalloy blades, Rare Metal Mat. Eng. 40 (2011) 2117-2120.
Google Scholar
[16]
Z.X. Shi, J.R. Li, S.Z. Liu, J.Q. Zhao, Effect of LAB on the stress rupture properties and fracture characteristic of DD6 single crystal superalloy, Rare Metal Mat. Eng. 41 (2012) 962-966.
DOI: 10.1016/s1875-5372(12)60053-8
Google Scholar
[17]
R.M. Kearsey, J.C. Beddoes, K.M. Jaansalu, W.T. Thompson, P. Au, The effects of Re, W and Ru on microsegregation behaviour in single crystal superalloy systems, Superalloys 2004, Warrendale, TMS, 801-810.
DOI: 10.7449/2004/superalloys_2004_801_810
Google Scholar
[18]
M. Ramsperger, R.F. Singer, C. Körner, Microstructure of the nickel-base superalloy CMSX-4 fabricated by selective electron beam melting, Metall. Mater. Trans. A 47 (2016) 1469–1480.
DOI: 10.1007/s11661-015-3300-y
Google Scholar
[19]
H. Z Fu, X.G. Geng, High rate directional solidification and its application in single crystal superalloys, Sci. Technol. Adv. Mat. 2 (2001) 197-204.
DOI: 10.1016/s1468-6996(01)00049-3
Google Scholar
[20]
Q.Z. Chen, C.N. Jones, D.M. Knowles, The grain boundary microstructures of the base and modified RR 2072 bicrystal superalloys and their effects on the creep properties, Mat. Sci. Eng. A 385 (2004) 402-418.
DOI: 10.1016/s0921-5093(04)00905-0
Google Scholar
[21]
K. Wu, G.Q. Liu, B.F. Hu, Y.W. Zhang, Y. Tao, J.T. Liu, Effect of solution cooling rate and post treatment on γ' precipitation and microhardness of a novel nickel-based P/M superalloy FGH98I, Rare Metal Mat. Eng. 41 (2012) 1267-1272.
Google Scholar