Influence of Precipitation Hardening on the Sliding Wear Behavior of a Cu-Zn-Al-Mn-Si Based Brass Alloy

Article Preview

Abstract:

Special brasses containing Mn and Si possess high wear resistance due to the dispersion of hard Mn5Si3 particles. The effect of precipitation hardening on the wear resistance of a Cu–30Zn–3Al–3Mn–0.7Si based brass alloy was investigated. Dry sliding wear test was conducted using a block-on-ring configuration. The results indicated that finely, nanoscale Mn5Si3 particles precipitated from the matrix after annealing at 800 °C for 4 h, resulting in the increase of hardness from 240 to 278 HV. Both the wear loss and friction coefficient decreased, indicating the improvement of the wear resistance. From the examination of the worn surfaces, adhesive and abrasive wear were found to be the major wear forms. The adhesion and abrasion decreased after the precipitation-hardening treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

355-360

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.S. Kim, W.Y. Kim, K.H. Song, Effect of post-heat treatment in ECAP processed Cu–40%Zn brass, J. Alloy. Compd. 536S (2012) 200-203.

DOI: 10.1016/j.jallcom.2011.11.079

Google Scholar

[2] R. Kumar, S.M. Dasharath, P.C. Kang, C.C. Koch, S. Mula, Enhancement of mechanical properties of low stacking fault energy brass processed by cryorolling followed by short-annealing, Mater. Design 67 (2015) 637-643.

DOI: 10.1016/j.matdes.2014.11.014

Google Scholar

[3] M. Sundberg, R. Sundberg, S. Hogmark, S. Otterberg, B. Lehtinen, S.E. Hornstrom, S.E. Karlsson, Metallographic aspects on wear of special brass, Wear 115 (1987) 151-165.

DOI: 10.1016/0043-1648(87)90206-7

Google Scholar

[4] K. Elleuch, R. Elleuch, R. Mnif, V. Fridrici, P. Kapsa, Sliding wear transition for the CW614 brass alloy, Tribol. Int. 39 (2006) 290-296.

DOI: 10.1016/j.triboint.2005.01.036

Google Scholar

[5] H. Mindivan, H. Çimenoglu, E.S. Kayali, Microstructures and wear properties of brass synchroniser rings, Wear 254 (2003) 532-537.

DOI: 10.1016/s0043-1648(03)00023-1

Google Scholar

[6] Y.S. Sun, G.W. Lorimer, N. Ridley, Microstructure of high tensile strength brasses containing silicon and manganese, Met. Trans. A 20 (1989) 1199-1206.

DOI: 10.1007/bf02647401

Google Scholar

[7] D. Odabas, S. Su, A comparison of the reciprocating and continuous two-body abrasive wear behavior of solution-treated and age-hardened 2014 Al alloy, Wear 208 (1997) 25-35.

DOI: 10.1016/s0043-1648(96)07378-4

Google Scholar

[8] A. Wang, H.J. Rack, Abrasive wear of silicon carbide particulate- and whisker-reinforced 7091 aluminum matrix composite, Wear 146 (1991) 337-348.

DOI: 10.1016/0043-1648(91)90073-4

Google Scholar

[9] W.Q. Song, P. Krauklis, A.P. Mouritz, S. Bandyopadhyay, The effect of thermal ageing on the abrasive wear behaviour of age-hardening 2014 Al/SiC and 6061 Al/SiC composites, Wear 185 (1995) 125-130.

DOI: 10.1016/0043-1648(95)06599-7

Google Scholar

[10] Y.N. Liang, Z.Y. Ma, S.Z. Li, S. Li, J. Bi, Impact abrasive behavior of SiCp/2024Al composites in single pendulum scratch testing, Wear 178 (1994) 9-15.

DOI: 10.1016/0043-1648(94)90125-2

Google Scholar

[11] A. Waheed, N. Ridley, Microstructure and wear of some high tensile brasses J. Mater. Sci. 29 (1994), 1692-1699.

DOI: 10.1007/bf00368948

Google Scholar

[12] W.X. Qi, J.P. Tu, F. Liu, Y.Z. Yang, N.Y. Wang, H.M. Lu, X.B. Zhang, S.Y. Guo, M.S. Liu, Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy, Mater. Sci. Eng. A 343 (2003) 89-96.

DOI: 10.1016/s0921-5093(02)00387-8

Google Scholar

[13] R.O. Galicia, C.G. Garcia, M.A. Alcantara, A.H. Vazquez, Influence of heat treatment and composition variations on microstructure, hardness, and wear resistance of C 18000 copper alloy, ISRN Mecha. Eng. 2012 (2012) 1-7.

DOI: 10.5402/2012/248989

Google Scholar

[14] Y.R. Liu, Z.Z. Dong, L.M. Yu, Y.C. Liu, H.J. Li, L. Zhang, Effects of aging on shape memory and wear resistance of a Fe-Mn-Si-based alloy, J. Mater. Res. 29 (2014) 2809-2816.

DOI: 10.1557/jmr.2014.344

Google Scholar

[15] C. Meric, E. Atik, H. Kacar, Effect of aging on the abrasive wear properties of AlMgSi1 alloy, Mater. Design 27 (2006) 1180-1186.

DOI: 10.1016/j.matdes.2005.02.005

Google Scholar

[16] H.O. Zhuo, J.C. Tang, N. Ye, A novel approach for strengthening Cu–Y2O3 composites by in situ reaction at liquidus temperature, Mater. Sci. Eng. A 584 (2013) 1-6.

DOI: 10.1016/j.msea.2013.07.007

Google Scholar

[17] S.E. Broyles, K.R. Anderson, J.R. Groza, J.C. Gibeling, Creep deformation of dispersion strengthened copper, Metall. Mater. Trans. A 27 (1996) 1217-1227.

DOI: 10.1007/bf02649859

Google Scholar

[18] U.F. Kocks, The theory of an obstacle-controlled yield strength-Report after an international workshop, Mater. Sci. Eng. A 27 (1977) 291-298.

DOI: 10.1016/0025-5416(77)90212-9

Google Scholar

[19] M.F. Ashby, Physics of strength and plasticity, MIT Press, Cambridge, (1969).

Google Scholar

[20] G. Purcek, H. Yanar, O. Saray, I. Karamanc, H.J. Maier, Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu-Cr-Zr alloy, Wear 311 (2014) 149-158.

DOI: 10.1016/j.wear.2014.01.007

Google Scholar

[21] Kang. S, A study of friction and wear characteristics of copper- and iron-based sintered materials, Wear 162–164 (1993) 1123-1128.

DOI: 10.1016/0043-1648(93)90131-5

Google Scholar

[22] T.R. Prabhu, V.K. Varma, S. Vedantam, Effect of SiC volume fraction and size on dry sliding wear of Fe/SiC/graphite hybrid composites for high sliding speed applications, Wear 309 (2014) 1-10.

DOI: 10.1016/j.wear.2013.10.006

Google Scholar

[23] J. Xia, C.X. Li, H. Dong, Thermal oxidation treatment of B2 iron aluminide for improved wear resistance, Wear 258 (2005) 1804-1812.

DOI: 10.1016/j.wear.2004.12.016

Google Scholar

[24] J. Zhang, A.T. Alpas, Delamination wear in ductile materials containing second phase particles, Mater. Sci. Eng. A 160 (1993) 25-35.

DOI: 10.1016/0921-5093(93)90494-y

Google Scholar