[1]
H.S. Kim, W.Y. Kim, K.H. Song, Effect of post-heat treatment in ECAP processed Cu–40%Zn brass, J. Alloy. Compd. 536S (2012) 200-203.
DOI: 10.1016/j.jallcom.2011.11.079
Google Scholar
[2]
R. Kumar, S.M. Dasharath, P.C. Kang, C.C. Koch, S. Mula, Enhancement of mechanical properties of low stacking fault energy brass processed by cryorolling followed by short-annealing, Mater. Design 67 (2015) 637-643.
DOI: 10.1016/j.matdes.2014.11.014
Google Scholar
[3]
M. Sundberg, R. Sundberg, S. Hogmark, S. Otterberg, B. Lehtinen, S.E. Hornstrom, S.E. Karlsson, Metallographic aspects on wear of special brass, Wear 115 (1987) 151-165.
DOI: 10.1016/0043-1648(87)90206-7
Google Scholar
[4]
K. Elleuch, R. Elleuch, R. Mnif, V. Fridrici, P. Kapsa, Sliding wear transition for the CW614 brass alloy, Tribol. Int. 39 (2006) 290-296.
DOI: 10.1016/j.triboint.2005.01.036
Google Scholar
[5]
H. Mindivan, H. Çimenoglu, E.S. Kayali, Microstructures and wear properties of brass synchroniser rings, Wear 254 (2003) 532-537.
DOI: 10.1016/s0043-1648(03)00023-1
Google Scholar
[6]
Y.S. Sun, G.W. Lorimer, N. Ridley, Microstructure of high tensile strength brasses containing silicon and manganese, Met. Trans. A 20 (1989) 1199-1206.
DOI: 10.1007/bf02647401
Google Scholar
[7]
D. Odabas, S. Su, A comparison of the reciprocating and continuous two-body abrasive wear behavior of solution-treated and age-hardened 2014 Al alloy, Wear 208 (1997) 25-35.
DOI: 10.1016/s0043-1648(96)07378-4
Google Scholar
[8]
A. Wang, H.J. Rack, Abrasive wear of silicon carbide particulate- and whisker-reinforced 7091 aluminum matrix composite, Wear 146 (1991) 337-348.
DOI: 10.1016/0043-1648(91)90073-4
Google Scholar
[9]
W.Q. Song, P. Krauklis, A.P. Mouritz, S. Bandyopadhyay, The effect of thermal ageing on the abrasive wear behaviour of age-hardening 2014 Al/SiC and 6061 Al/SiC composites, Wear 185 (1995) 125-130.
DOI: 10.1016/0043-1648(95)06599-7
Google Scholar
[10]
Y.N. Liang, Z.Y. Ma, S.Z. Li, S. Li, J. Bi, Impact abrasive behavior of SiCp/2024Al composites in single pendulum scratch testing, Wear 178 (1994) 9-15.
DOI: 10.1016/0043-1648(94)90125-2
Google Scholar
[11]
A. Waheed, N. Ridley, Microstructure and wear of some high tensile brasses J. Mater. Sci. 29 (1994), 1692-1699.
DOI: 10.1007/bf00368948
Google Scholar
[12]
W.X. Qi, J.P. Tu, F. Liu, Y.Z. Yang, N.Y. Wang, H.M. Lu, X.B. Zhang, S.Y. Guo, M.S. Liu, Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy, Mater. Sci. Eng. A 343 (2003) 89-96.
DOI: 10.1016/s0921-5093(02)00387-8
Google Scholar
[13]
R.O. Galicia, C.G. Garcia, M.A. Alcantara, A.H. Vazquez, Influence of heat treatment and composition variations on microstructure, hardness, and wear resistance of C 18000 copper alloy, ISRN Mecha. Eng. 2012 (2012) 1-7.
DOI: 10.5402/2012/248989
Google Scholar
[14]
Y.R. Liu, Z.Z. Dong, L.M. Yu, Y.C. Liu, H.J. Li, L. Zhang, Effects of aging on shape memory and wear resistance of a Fe-Mn-Si-based alloy, J. Mater. Res. 29 (2014) 2809-2816.
DOI: 10.1557/jmr.2014.344
Google Scholar
[15]
C. Meric, E. Atik, H. Kacar, Effect of aging on the abrasive wear properties of AlMgSi1 alloy, Mater. Design 27 (2006) 1180-1186.
DOI: 10.1016/j.matdes.2005.02.005
Google Scholar
[16]
H.O. Zhuo, J.C. Tang, N. Ye, A novel approach for strengthening Cu–Y2O3 composites by in situ reaction at liquidus temperature, Mater. Sci. Eng. A 584 (2013) 1-6.
DOI: 10.1016/j.msea.2013.07.007
Google Scholar
[17]
S.E. Broyles, K.R. Anderson, J.R. Groza, J.C. Gibeling, Creep deformation of dispersion strengthened copper, Metall. Mater. Trans. A 27 (1996) 1217-1227.
DOI: 10.1007/bf02649859
Google Scholar
[18]
U.F. Kocks, The theory of an obstacle-controlled yield strength-Report after an international workshop, Mater. Sci. Eng. A 27 (1977) 291-298.
DOI: 10.1016/0025-5416(77)90212-9
Google Scholar
[19]
M.F. Ashby, Physics of strength and plasticity, MIT Press, Cambridge, (1969).
Google Scholar
[20]
G. Purcek, H. Yanar, O. Saray, I. Karamanc, H.J. Maier, Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu-Cr-Zr alloy, Wear 311 (2014) 149-158.
DOI: 10.1016/j.wear.2014.01.007
Google Scholar
[21]
Kang. S, A study of friction and wear characteristics of copper- and iron-based sintered materials, Wear 162–164 (1993) 1123-1128.
DOI: 10.1016/0043-1648(93)90131-5
Google Scholar
[22]
T.R. Prabhu, V.K. Varma, S. Vedantam, Effect of SiC volume fraction and size on dry sliding wear of Fe/SiC/graphite hybrid composites for high sliding speed applications, Wear 309 (2014) 1-10.
DOI: 10.1016/j.wear.2013.10.006
Google Scholar
[23]
J. Xia, C.X. Li, H. Dong, Thermal oxidation treatment of B2 iron aluminide for improved wear resistance, Wear 258 (2005) 1804-1812.
DOI: 10.1016/j.wear.2004.12.016
Google Scholar
[24]
J. Zhang, A.T. Alpas, Delamination wear in ductile materials containing second phase particles, Mater. Sci. Eng. A 160 (1993) 25-35.
DOI: 10.1016/0921-5093(93)90494-y
Google Scholar