[1]
Y.W. Kim, Development of beta gamma alloys: opening robust processing and greater application potential for TiAl-based alloys, In: Kim Y-W, Morris D, Yang R, Leyens C, editors, Structural aluminides for elevated temperatures, Warrendale: The Minerals & Materials, 2008, p.215.
Google Scholar
[2]
J. Kumpfert, Y.W. Kim, D.M. Dimiduk, Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46. 5Al-3. 0Nb-2. 1Cr-0. 2W, J. Materials Science & Engieering A, 1995, s192–193: 465-473.
DOI: 10.1016/0921-5093(94)03263-7
Google Scholar
[3]
C.T. Liu, P.J. Maziasz, Microstructural control and mechanical properties of dual-phase TiAl alloys, J. Intermetallics, 1998, 6(7–8): 653-661.
DOI: 10.1016/s0966-9795(98)00062-4
Google Scholar
[4]
Y.Y. Chen, F.T. Kong, Recent developments in engineering γ-TiAl intermetallics, J. Transactions of Nonferrous Metals Society of China, 2002, 12(4): 605-609.
Google Scholar
[5]
F.T. Kong, N. Cui, Y.Y. Chen, et al, The hot deformation behavior of Ti-43Al-9V-Y alloy, J. Bibliographie: 144 Réf, 2013: 53-56.
DOI: 10.3724/sp.j.1037.2013.00513
Google Scholar
[6]
W. Xu, H. Zhang, D. Shan, Promoting the mechanical properties of Ti42Al9VY alloy by hot extrusion in the α+β phase region, J. Journal of Zhejiang University, 2010, 11(10): 738-743.
DOI: 10.1631/jzus.a1000138
Google Scholar
[7]
F.T. Kong, Y.Y. Chen, J. Tian, et al, Effect of Yttrium on Microstructure and Mechanical Properties of Ti-43Al-9V Alloy, J. Chinese Journal of Rare Metals, 2004, 28(1): 75-77.
DOI: 10.1016/j.intermet.2004.07.014
Google Scholar
[8]
Z.H. Jiao, Y.U. Chen, Y.J. Su, et al, Tensile Properties of Large-Sized Ti-43Al-9V-Y Alloy with Duplex and Fully Lamellar Structure, J. Materials for Mechanical Engineering, 2014, 38(3): 50-49.
Google Scholar
[9]
Y.J. Su, F.T. Kong, Y.Y. Chen, et al, Microstructure and mechanical properties of large size Ti-43Al-9V-0. 2Y alloy pancake produced by pack-forging, J. Intermetallics, 2013, 34(3): 29–34.
DOI: 10.1016/j.intermet.2012.11.004
Google Scholar
[10]
L.J. Xu, S.L. Xiao, Y.Y. Chen, et al, Microstructure and mechanical properties of Ti-43Al-9V alloy fabricated by spark plasma sintering, J. Transactions of Nonferrous Metals Society of China, 2012, 22(4): 768–772.
DOI: 10.1016/s1003-6326(11)61243-0
Google Scholar
[11]
Y.Y. Chen, F.T. Kong, Han J, et al. Influence of yttrium on microstructure, mechanical properties and deformability of Ti-43Al-9V alloy[J]. Intermetallics, 2005, 13(3): 263-266.
DOI: 10.1016/j.intermet.2004.07.014
Google Scholar
[12]
F.T. Kong, Y.Y. Chen, B.H. Li, Influence of yttrium on the high temperature deformability of TiAl alloys, J. Materials Science & Engineering A, 2009, 499(1–2): 53-57.
DOI: 10.1016/j.msea.2007.09.093
Google Scholar
[13]
F.T. Kong, B.H. Li, Y.Y. Chen, et al, Mechanisms of Improvement of High Temperature Deformability of Ti-43Al-9V-Y Alloy with Addition of Y, J. Journal of Rare Earths, 2004(S1): 150-153.
Google Scholar
[14]
F.T. Kong, Y.Y. Chen, W. Wang, et al, Microstructures and mechanical properties of hot-pack rolled Ti-43Al-9V-Y alloy sheet, J. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1126-1130.
DOI: 10.1016/s1003-6326(08)60418-5
Google Scholar
[15]
Y.H. Wang, J.P. Lin, Y.H. He, et al, Fabrication and SPS microstructures of Ti-45Al-8. 5Nb-(W, B, Y) alloying powders [J]. Intermetallics, 2008, 16(2): 215-224.
DOI: 10.1016/j.intermet.2007.09.010
Google Scholar
[16]
Liu Na, Li Zhou, Yuan Hua, Fabrication and Characterization of Gas Atomized TiAl Alloy Powders, J. Journal of iron and steel research, 2011, S2: 537-540.
Google Scholar
[17]
W.C. Xu, H. Zhang, D.B. Shan, Promoting the mechanical properties of Ti42Al9V0. 3Y alloy by hot extrusion in the α+β phase region, J. Journal of Zhejiang University-SCIENCE A, 2010, 11(10): 738-743.
DOI: 10.1631/jzus.a1000138
Google Scholar