[1]
A.A. Luo, Recent magnesium alloy development for elevated temperature applications, Int Mater Rev. 49(2004)13-30.
Google Scholar
[2]
X.M. Zhang, L. Li, Y.L. Deng, N. Zhou, Superplasticity and microstructure in Mg-Gd-Y-Zr alloy prepared by extrusion, J. Alloys Compd. 481(2009)296-300.
DOI: 10.1016/j.jallcom.2009.03.166
Google Scholar
[3]
S.M. He, X.Q. Zeng, L.M. Peng, Microstructure and strengthing mechanism of high strength Mg-10Gd-2Y-0. 5Zr alloy, J. Alloys Compd. 427(2007) 316-323.
DOI: 10.1016/j.jallcom.2006.03.015
Google Scholar
[4]
X.M. Zhang, C.P. Tang, D. l. Deng, Phase transformation in Mg-8Gd-4Y-Nd-Zr alloy, J. Alloys Compd. 509(2001)6170-6174.
DOI: 10.1016/j.jallcom.2011.03.059
Google Scholar
[5]
J. Liu,Z. Cui, L. Ruan, A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B, Mater. Sci. Eng. A 529(2011)300-310.
DOI: 10.1016/j.msea.2011.09.032
Google Scholar
[6]
S.E. Ion, F.J. Humphrey, S.H. White, Acta Metall. 30 (1982) (1909).
Google Scholar
[7]
R. Kaibyshev, O. Stidikov, in: T.R. McNelley (Ed. ), Recrystallization and Related Phenomena, MIAS, Monterey, 1997, p.199.
Google Scholar
[8]
A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49 (2001) 1199.
Google Scholar
[9]
X.Y. Yang, MIURA H, SAKAI T, Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation, Mater Trans. 44(2003)197-203.
DOI: 10.2320/matertrans.44.197
Google Scholar
[10]
Z.Y. Liu, S. Bai, B. Kang, Low-temperature dynamic recrystallization occurring at a high deformation temperature during hot compression of twin-roll-cast Mg-5. 51Zn-0. 49Zr alloy, Scr Mater. 60(2009)403-406.
DOI: 10.1016/j.scriptamat.2008.11.023
Google Scholar
[11]
S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima, Recrystallization mechanism of cast AZ91 magnesium alloy during hot compression deformation, Mater. Sci. Eng. A, 527(2009)52-60.
DOI: 10.1016/j.msea.2009.08.062
Google Scholar
[12]
LI L, ZHOU J, DUSZCZYK J, Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion, Mater. Sci. Eng. A 172(2006)372-380.
DOI: 10.1016/j.jmatprotec.2005.09.021
Google Scholar
[13]
G. Zhou,H. Ding,F. Cao, Hot compression deformation and deformation mechanisms of TC21 alloy, The Chinese Journal of Nonferrous Metals. 21(2011)2111-2118.
Google Scholar
[14]
E.I. Poliak J.J. Jonas, Initiation of dynamic recrystallization in constant strain rate hot deformation, ISIJ Int. 43(2003)684-691.
DOI: 10.2355/isijinternational.43.684
Google Scholar
[15]
Abbas Najafizadeh J.J. Jones. Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ International, 46(2006)1679-1684.
DOI: 10.2355/isijinternational.46.1679
Google Scholar
[16]
Z.H. Huang, S.M. Liang, R.S. Chen, E. H, Han. Solidification Pathways and Constituent Phases of Mg-Zn-Y-Zr Alloys, J. Alloys Comp. 468 (2009)170-178.
DOI: 10.1016/j.jallcom.2008.01.034
Google Scholar
[17]
G.Z. Quan, G.S. Li, T. Chen, Y.X. Wang, Y.W. Zhang, J. Zhou, Dynamic Recrystallization Kinetics of 42CrMo Steel During Compression at Different Temperatures and Strain Rates, Mater. Sci. Eng. A 528 (2011)4643-4651.
DOI: 10.1016/j.msea.2011.02.090
Google Scholar
[18]
M.R. Barnett. Twinning and the ductility of magnesium alloys: Part І: Tension twins, Mater. Sci. Eng. A 464(2007)1-7.
Google Scholar
[19]
B.C. Sun, SHIN M.S. Shin, D.W. Kin, N.J. Kim, Twinning behavior of Mg-4Zn-1Gd alloy sheet during longitudinal tensial deformation, Scr Mater. 69(2013)465-468.
DOI: 10.1016/j.scriptamat.2013.05.043
Google Scholar
[20]
X.S. Xia, K. Z, G.L. Xing, L.M. Ming, J.L. Yong, Microstructure and Textture of Coarse Mg-Gd-Y-Nd-Zr alloy after hot compression, Mater Des. 44(2013)521-527.
DOI: 10.1016/j.matdes.2012.08.043
Google Scholar