[1]
Kim YW. Ordered inter-metallic alloys, part III: gamma titanium aluminides. JOM 1995; 47: 39.
Google Scholar
[2]
Dimiduk DM. Gamma titanium aluminidealloysdan assessment within thecompetition of aerospace structural materials, Mater SciEng A 1999; 263: 281.
Google Scholar
[3]
Edward A L, Gamma titanium aluminides as prospective structural materials. Intermetallics 2000; 8: 1239.
Google Scholar
[4]
Paul. J. D. H, Oehring. M, Appel. F. Processing and properties of gamma titanium aluminides and their potential for aerospace applications. Lightweight Alloys for Aerospace Applications, New Orleans, LA, USA, Feb 12-14, (2001).
DOI: 10.1002/9781118787922.ch16
Google Scholar
[5]
Clemens. H, Appel. F, Bartels. A, Baur. A, et al. Processing and Application of Engineering γ-TiAl Based Alloys. Ti-2003 Science and Technology 2004; 4: 2123.
Google Scholar
[6]
Toshimitsu T.Development of a TiAl turbocharger for passenger vehicles. Materials Science and Engineering2002; A329-331: 582.
Google Scholar
[7]
Wu XH. Review of alloy and process development of TiAl alloys. Intermetallics 2006, 14: 1114.
Google Scholar
[8]
Xu XJ, Xu LH, Lin JP, Wang YL, Lin Z, Chen GL. Pilot processing an microstructurecontrol of high Nb containing TiAl alloy. Intermetallics 2005; 13: 337.
DOI: 10.1016/j.intermet.2004.07.007
Google Scholar
[9]
Gerling R, Clemens H, Schimansky F P. powder metallurgical processing of intermetallic gamma titanium Aluminnide. Advanced Engineering Materials 2004; 6(1-2): 23.
DOI: 10.1002/adem.200310559
Google Scholar
[10]
Clemens H, Keatler H, Ebergardt N, Knabl W. In: Kim YW, Dimiduk DM, Loretto MH editors. Gamma titanium aluminides. Warrendale, PA: TMS; 1999. p.209.
Google Scholar
[11]
Moll J H, Yolton C F, Mctiernan B J. PM processing of titanium aluminides. Int J Powder Metall 1990; 26(2): 149.
Google Scholar
[12]
Gerling R, SchimanskyF P, Wagner R. In: Aldinger Feditors. Materials byPowder Technology. PTM 1993, DGM Informationsgesellschaft, Oberursel, Germany, 1993, p.379.
Google Scholar
[13]
Yolton C F, Kim Y W, Habel U. Powdermetallurgyprocessingofgammatitaniumaluminide. In: Kim Y W, Clemens H, Andrew H Rosenberger ed. Gamma Titanium Aluminide, TMS, Warrendale, 2003: 233.
Google Scholar
[14]
Hohmann M,Diemar W,Ludwig N.Modem systems for ceramic-free powder production.Advances in PowderMetallurgy&Particulate Materials 1992, 1: 27.
Google Scholar
[15]
Leo VM, Reddy G. Processes for Production of high purity metal powder. JOM 2003; 55(3): 14.
Google Scholar
[16]
Prauchat B, Popoff F, Thomas M. Characterization of HIPed and Extruded Powder Metallurgy Titanium Aluminide. Advanced Engineering Materials 2002, 4: 133.
DOI: 10.1002/1527-2648(200203)4:3<133::aid-adem133>3.0.co;2-h
Google Scholar
[17]
Dunkley J J, Palmer J D. Factors affecting particle size of atomized metal powder[J]. Powder Metallurgy, 1986, 29(4): 287.
DOI: 10.1179/pom.1986.29.4.287
Google Scholar
[18]
Strauss J T, Miller S A. Effect of melt superheat on powder charateristics produced by close-coupled gas atomization[J]. Advanced Powder Metallurgy & Particulate Materials, 1996, (part 1): 55.
Google Scholar
[19]
Uslan I, Saritas S, Davies T J. Effect of variables on size and characteristics of gas atomized aluminiumpowders[J]. Powder Metallurgy, 1999, 42(2): 157.
DOI: 10.1179/003258999665512
Google Scholar
[20]
Eberhardt N, Jorg R, Kestler H, et al. Powder metallurgical manufacturing and characterisation of components madeof intermetallic alloyTi-46. 5Al-4(Cr, Nb, Ta, B)[J]. Zeitschrift fur Metallkunde, 1998. 89(11): 772.
Google Scholar