[1]
B.A. Cowles, High cycle fatigue in aircraft gas turbines-an industry perspective, International Journal of fracture. 80 (1996) 147-163.
DOI: 10.1007/bf00012667
Google Scholar
[2]
B.C. Wilson, E.R. Cutler, G.E. Fuchs, Effect of solidification parameters on the microstructures and properties of CMSX-10, Materials Science and Engineering A. 479 (2008) 356-364.
DOI: 10.1016/j.msea.2007.07.030
Google Scholar
[3]
M. Lamm, R.F. Singer, The effect of casting conditions on the high-cycle fatigue properties of the single crystal nickel-base superalloy, Metallurgical and Materials Transactions A. 38A (2007) 1177-1183.
DOI: 10.1007/s11661-007-9188-4
Google Scholar
[4]
Z.X. Shi, S.Z. Liu, X.G. Wang, et al, Effect of solution cooling method on the microstructure and stress rupture properties of a single crystal superalloy, Materials Science Forum. 816 (2015) 513-517.
DOI: 10.4028/www.scientific.net/msf.816.513
Google Scholar
[5]
J. Wang, L.T. Zhang, K. Chen et al, Morphology and chemical composition of γ/γ' phases in Re-containing Ni-based single crystal superalloy during two-step aging, Transaction Nonferrous Metal Society of China. 21 (2011) 1513-1517.
DOI: 10.1016/s1003-6326(11)60889-3
Google Scholar
[6]
Z.X. Shi, S.Z. Liu, J.Q. Zhao et al, Effect of low angle boundary on high cycle fatigue properties of single crystal superalloy, Transactions of Materials and Heat Treatment. 36 (2015) 52-57.
Google Scholar
[7]
Z.X. Shi, J.R. Li, S.Z. Liu et al, High cycle fatigue behavior of the second generation single crystal superalloy DD6, Trans. Nonferrous Met. Soc. China. 21 (2011) 998-1003.
DOI: 10.1016/s1003-6326(11)60812-1
Google Scholar
[8]
Y.L. Sun, J.J. Yu, Z.J. Wang et al, Rotary bending high cycle fatigue behavior of single crystal superalloy DD499 in 〈111〉 orientation, Rare Metal Materials and Engineering. 40 (2011) 239-242.
Google Scholar
[9]
J.R. Li, Z.G. Zhong, D.Z. Tang et al, Acta Metallurgica Sinica. 35 (1999) S266-S269.
Google Scholar
[10]
J.R. Li, Z.G. Zhong, D.Z. Tang et al, A low-cost second geneution single crystal superalloy DD6, in: T.M. Pollock, R.D. Kissinger (Eds. ), Superalloys 2000[C], Warrendale, TMS, 2000, pp.777-783.
DOI: 10.7449/2000/superalloys_2000_777_783
Google Scholar
[11]
A.J. He, S.F. Li, Q.S. Luo, Experimental investigation on tension behavior of DD6 single crystal thin-walled cylindrical specimen under high temperature, Journal of Aerospace Power. 27 (2012) 255-259.
Google Scholar
[12]
J.R. Li, Z.G. Zhong, D.Z. Tang et al, Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6, in: R.C. Reed, K.A. Green (Eds. ), Superalloys 2008[C]. Warrendale: TMS, 2008, pp.443-450.
DOI: 10.7449/2008/superalloys_2008_443_451
Google Scholar
[13]
ASTM. Annual book of ASTM standard, ASTM standard E606, vol. 03. 01, Philadelphia, PA, (1996).
Google Scholar
[14]
S. Suresh. Fatigue of Materials. Cambridge: Cambridge University press, 1998, pp.223-225.
Google Scholar
[15]
X. Zhu, A. Shyam, J.W. Jones et al, Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles, International Journal of Fatigue. 28 (2006) 1566-1571.
DOI: 10.1016/j.ijfatigue.2005.04.016
Google Scholar
[16]
A.J. Wasson, G.E. Fuchs, The effect of carbide morphologies on elevated temperature tensile and fatigue behavior of a modified single crystal Ni-base superalloy, in: R.C. Reed, K.A. Green (Eds. ), Superalloys2008 [C]. Warrendale: TMS, 2008, pp.489-497.
DOI: 10.7449/2008/superalloys_2008_489_497
Google Scholar
[17]
S. Müller, J. Rösler, C. Sommer et al, The influence of load ratio, temperature, orientation and hold time on fatigue crack growth of CMSX-4, in: T.M. Pollock, R.D. Kissinger (Eds. ), Superalloys2000 [C]. Warrendale: TMS, 2000, pp.347-355.
DOI: 10.7449/2000/superalloys_2000_347_356
Google Scholar