Influences of W and Al on the Microstructure and Stress-Rupture Property of Re-Free Ni-Based Single Crystal Superalloys

Article Preview

Abstract:

The influence of W and Al on the solidus and liquidus temperatures, microstructure and stress-rupture property at 980 °C/250 MPa was investigated in three Re-free experimental Ni-based single crystal superalloys. The results indicated that the solidus temperature increased for 14.0 °C and 9.8 °C by adding 0.84 wt.% W only and adding 0.45 wt.% Al and 0.44 wt.% W to the base alloy, respectively. The γ′ morphology changed from nearly cuboidal in the base alloy to cuboidal by adding 0.45 wt.% Al and 0.44 wt.% W. The volume fraction of γ′ precipitates increased, while the γ channel width decreased after adding Al and W. The additions of Al and W improved the stress-rupture life at 980 °C/250 MPa because of higher γ′ volume fraction, narrower γ matrix channel and more complete rafting structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

492-497

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.C. Reed, The superalloys: Fundamentals and applications, Cambridge University Press, Cambridge, UK, (2006).

Google Scholar

[2] Y. Amouyal, Z. Mao, C. Booth-Morrison and D.N. Seidman, Appl. Phys. Lett. 94 (2009), 041917-3.

Google Scholar

[3] Y. Amouyal, Z. Mao and D.N. Seidman, Appl. Phys. Lett. 93 (2008), 201905-3.

Google Scholar

[4] T. Kitashima, H. Harada, D. -H. Ping and T. Kbbayashi, Mater. Trans. 48 (2007), 566-569.

Google Scholar

[5] M. Pessah, P. Caron and T. Khan, in: Superalloys 1992, edited by S.D. Antolohch, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger and D.L. Klarstmm, TMS, Champion, PA (1992), pp.567-576.

Google Scholar

[6] C.T. Sims, N.S. Stoloff and W.C. Hagel: Superalloys II, John Wiley & Sons, New York, US (1987).

Google Scholar

[7] J.Y. Chen, Q. Li, J. Li, X. Tang and C. B. Xiao, Mater. Sci. Forum. 849 (2016), 557-562.

Google Scholar

[8] J.Y. Chen, L.M. Cao, M. Xue and L.J. Liu, Rare Metals. 33 (2014), 144-148.

Google Scholar

[9] M. Fahrmann, P. Fratzl, O. Paris, E. Fährmann and W.C. Johnson, Acta Metall. Mater. 43 (1995), 1007-1022.

Google Scholar

[10] T. Wang, G. Sheng, Z.K. Liu and L.Q. Chen, Acta Mater. 56 (2008), 5544-5551.

Google Scholar

[11] L.J. Carroll, Q. Feng, J.F. Mansfield and T.M. Pollock, Metall. Mater. Trans. 37A (2006), 2927-2938.

Google Scholar

[12] J.Y. Chen, L.M. Cao, X. Tang and M. Xue, Trans. Mater. Heat Treat. 37 (2016), 33-37.

Google Scholar

[13] T. Murakumo, T. Kobayashi, Y. Koizumi and H. Harada, Acta Mater. 52 (2004), 3737-3744.

Google Scholar

[14] M. Fahrmann, W. Hermann, E. Fährmann, A. Boegli, T.M. Pollock and H.G. Sockel, Mater. Sci. Eng. A260 (1999), 212-221.

Google Scholar

[15] H. Harada and H. Murakami, Design of Ni-base superalloys, in: T. Saito (Eds. ), Computational Materials Design, Springer-Verlag, Heidelberg, Berlin, 1999, pp.53-55.

Google Scholar

[16] T.M. Pollock and A.S. Argon, Acta Metall. Mater. 40 (1992), 1-30.

Google Scholar