Characteristics of Microscopic Inclusions and their Influence on Fatigue Crack Propagation in FGH96 Superalloy

Article Preview

Abstract:

FGH96 superalloy has been used in aircraft engine turbine discs due to the superior damage tolerance. This work investigated the characteristics of microscopic inclusions and their influence on fatigue crack propagation in hot isostatic pressed and heat treated commercial FGH96 superalloy. Low cycle fatigue crack growth tests were conducted. Several kinds of microscopic inclusions were identified by optical microscope (OM), scanning electric microscope (SEM) and energy dispersive spectrometer (EDS). Microscopic inclusions and secondary cracks were analyzed near the main cracks. Combined with the finite element method (FEM) results, it can be proposed that the microscopic inclusions have no critical influence on fatigue crack propagation in the specimens.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

505-516

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Krewerth, T. Lippmann, A. Weidner, et al, Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime, Int J Fatigue. 84 (2016) 40-52.

DOI: 10.1016/j.ijfatigue.2015.11.001

Google Scholar

[2] X.C. Chen, C.B. Shi, H.J. Guo, et al, Investigation of oxide inclusions and primary carbonitrides in Inconel 718 superalloy refined through electroslag remelting process, Metall Mater Trans B. 43 (2012) 1596-1607.

DOI: 10.1007/s11663-012-9723-6

Google Scholar

[3] J.B. Tan, X.Q. Wu, E.H. Han, et al, Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water, Corros Sci. 88 (2014) 349-359.

DOI: 10.1016/j.corsci.2014.07.059

Google Scholar

[4] D. Spriestersbach, P. Grad, E. Kerscher, Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime, Int J Fatigue. 64 (2014) 114-120.

DOI: 10.1016/j.ijfatigue.2014.03.003

Google Scholar

[5] J. Jiang, J. Yang, T.T. Zhang, et al, On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction, Acta Mater. 97 (2015) 367-379.

DOI: 10.1016/j.actamat.2015.06.035

Google Scholar

[6] T.T. Zhang, J. Jiang, B.A. Shollock, et al, Slip localization and fatigue crack nucleation near a non-metallic inclusion in polycrystalline nickel-based superalloy, Mater Sci Eng A. 641 (2015) 328-339.

DOI: 10.1016/j.msea.2015.06.070

Google Scholar

[7] C.E. Shamblen, D.R. Chang, Effect of inclusions on LCF life of HIP plus heat treated powder metal Rene 95, Metall Trans B. 16 (1985) 775-784.

DOI: 10.1007/bf02667513

Google Scholar

[8] J.M. Hyzak, I.M. Bernstein, The effect of defects on the fatigue crack initiation process in two P/M superalloys: Part Ⅰ. Fatigue origins, Metall Trans A. 13 (1982) 33-43.

DOI: 10.1007/bf02642413

Google Scholar

[9] R. Jones, L. Molent, S. Pitt, Similitude and the Paris crack growth law, Int J Fatigue. 30 (2008) 1873-1880.

DOI: 10.1016/j.ijfatigue.2008.01.016

Google Scholar

[10] G.M. Chai, X.C. Chen, H.J. Guo, Formation mechanism of primary carbides in FGH96 superalloy, Chin J Nonferrous Met. 22(8) (2012) 2205-2213.

Google Scholar

[11] X.B. Huang, Y. Zhang, Y.L. Liu, et al, Effect of small amount of nitrogen on carbide characteristics in unidirectional Ni-base superalloy, Metall Mater Trans A. 28 (1997) 2143-2147.

DOI: 10.1007/s11661-997-0172-9

Google Scholar

[12] F. Cosandey, D. Li, F. Sczerzenie, et al, The effect of Cerium on high temperature tensile and creep behavior of a superalloy, Metall Trans A. 14 (1983) 611-621.

DOI: 10.1007/bf02643777

Google Scholar

[13] D.M. Anliker, J.B. Newkirk, The effects of Cerium on the microstructure of INCO 901 superalloy, Metall Trans A. 7 (1976) 1711-1718.

DOI: 10.1007/bf02817889

Google Scholar

[14] K.D. Xu, Z.M. Ren, C.J. Li, Progress in application of rare metals in superalloys, Rare Metals. 33(2) (2014) 111-126.

DOI: 10.1007/s12598-014-0256-9

Google Scholar

[15] R.J. Fruehan, The free energy of formation of Ce2O2S and the nonstoichiometry of Cerium oxides, Metall Trans B. 10 (1979) 143-148.

DOI: 10.1007/bf02652457

Google Scholar

[16] Y.Q. Liu, L.J. Wang, J.B. Guo, et al, Thermodynamic analysis of cerium inclusion formed in spring steel used in fasterner of high-speed railway, Chin J Eng. 23(3) (2013) 720-726.

Google Scholar

[17] S.K. Paul, Numerical models to determine the effect of soft and hard inclusions on different plastic zones of a fatigue crack in a C(T) specimen, Eng Fract Mech. 159 (2016) 90-97.

DOI: 10.1016/j.engfracmech.2016.03.028

Google Scholar

[18] A. Melaner, A. Gustavsson, An FEM study of driving forces of short cracks at inclusions in hard steels, Int J Fatigue. 18 (1996) 389-399.

DOI: 10.1016/0142-1123(96)00069-2

Google Scholar

[19] K. Tanaka, T. Mura, A theory of fatigue crack initiation at inclusions, Metall Trans A. 13 (1982) 117-123.

DOI: 10.1007/bf02642422

Google Scholar

[20] J.M. Hyzak, I.M. Bernstein, The effect of defects on the fatigue crack initiation process in two P/M superalloys: Part Ⅱ. Surface-subsurface transition, Metall Trans A. 13 (1982) 45-52.

DOI: 10.1007/bf02642414

Google Scholar

[21] Z.G. Yang, J.M. Zhang, S.X. Li, et al, On the critical inclusion size of high strength steels under ultra-high cycle fatigue, Mater Sci Eng A. 427 (2006) 167-174.

DOI: 10.1016/j.msea.2006.04.068

Google Scholar

[22] J.M. Zhang, S.X. Li, Z.G. Yang, et al, Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime, Int J Fatigue. 29 (2007) 765-771.

DOI: 10.1016/j.ijfatigue.2006.06.004

Google Scholar

[23] T. Denda, P.L. Bretz, J.K. Tien, Inclusion size effect on the fatigue crack propagation mechanism and fracture mechanics of a superalloy, Metall Trans A. 23 (1992) 519-526.

DOI: 10.1007/bf02801169

Google Scholar

[24] C.Q. Sun, Z.Q. Lei, J.J. Xie, et al, Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure, Int J Fatigue. 48 (2013) 19-27.

DOI: 10.1016/j.ijfatigue.2012.12.004

Google Scholar