[1]
D. Krewerth, T. Lippmann, A. Weidner, et al, Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime, Int J Fatigue. 84 (2016) 40-52.
DOI: 10.1016/j.ijfatigue.2015.11.001
Google Scholar
[2]
X.C. Chen, C.B. Shi, H.J. Guo, et al, Investigation of oxide inclusions and primary carbonitrides in Inconel 718 superalloy refined through electroslag remelting process, Metall Mater Trans B. 43 (2012) 1596-1607.
DOI: 10.1007/s11663-012-9723-6
Google Scholar
[3]
J.B. Tan, X.Q. Wu, E.H. Han, et al, Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water, Corros Sci. 88 (2014) 349-359.
DOI: 10.1016/j.corsci.2014.07.059
Google Scholar
[4]
D. Spriestersbach, P. Grad, E. Kerscher, Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime, Int J Fatigue. 64 (2014) 114-120.
DOI: 10.1016/j.ijfatigue.2014.03.003
Google Scholar
[5]
J. Jiang, J. Yang, T.T. Zhang, et al, On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction, Acta Mater. 97 (2015) 367-379.
DOI: 10.1016/j.actamat.2015.06.035
Google Scholar
[6]
T.T. Zhang, J. Jiang, B.A. Shollock, et al, Slip localization and fatigue crack nucleation near a non-metallic inclusion in polycrystalline nickel-based superalloy, Mater Sci Eng A. 641 (2015) 328-339.
DOI: 10.1016/j.msea.2015.06.070
Google Scholar
[7]
C.E. Shamblen, D.R. Chang, Effect of inclusions on LCF life of HIP plus heat treated powder metal Rene 95, Metall Trans B. 16 (1985) 775-784.
DOI: 10.1007/bf02667513
Google Scholar
[8]
J.M. Hyzak, I.M. Bernstein, The effect of defects on the fatigue crack initiation process in two P/M superalloys: Part Ⅰ. Fatigue origins, Metall Trans A. 13 (1982) 33-43.
DOI: 10.1007/bf02642413
Google Scholar
[9]
R. Jones, L. Molent, S. Pitt, Similitude and the Paris crack growth law, Int J Fatigue. 30 (2008) 1873-1880.
DOI: 10.1016/j.ijfatigue.2008.01.016
Google Scholar
[10]
G.M. Chai, X.C. Chen, H.J. Guo, Formation mechanism of primary carbides in FGH96 superalloy, Chin J Nonferrous Met. 22(8) (2012) 2205-2213.
Google Scholar
[11]
X.B. Huang, Y. Zhang, Y.L. Liu, et al, Effect of small amount of nitrogen on carbide characteristics in unidirectional Ni-base superalloy, Metall Mater Trans A. 28 (1997) 2143-2147.
DOI: 10.1007/s11661-997-0172-9
Google Scholar
[12]
F. Cosandey, D. Li, F. Sczerzenie, et al, The effect of Cerium on high temperature tensile and creep behavior of a superalloy, Metall Trans A. 14 (1983) 611-621.
DOI: 10.1007/bf02643777
Google Scholar
[13]
D.M. Anliker, J.B. Newkirk, The effects of Cerium on the microstructure of INCO 901 superalloy, Metall Trans A. 7 (1976) 1711-1718.
DOI: 10.1007/bf02817889
Google Scholar
[14]
K.D. Xu, Z.M. Ren, C.J. Li, Progress in application of rare metals in superalloys, Rare Metals. 33(2) (2014) 111-126.
DOI: 10.1007/s12598-014-0256-9
Google Scholar
[15]
R.J. Fruehan, The free energy of formation of Ce2O2S and the nonstoichiometry of Cerium oxides, Metall Trans B. 10 (1979) 143-148.
DOI: 10.1007/bf02652457
Google Scholar
[16]
Y.Q. Liu, L.J. Wang, J.B. Guo, et al, Thermodynamic analysis of cerium inclusion formed in spring steel used in fasterner of high-speed railway, Chin J Eng. 23(3) (2013) 720-726.
Google Scholar
[17]
S.K. Paul, Numerical models to determine the effect of soft and hard inclusions on different plastic zones of a fatigue crack in a C(T) specimen, Eng Fract Mech. 159 (2016) 90-97.
DOI: 10.1016/j.engfracmech.2016.03.028
Google Scholar
[18]
A. Melaner, A. Gustavsson, An FEM study of driving forces of short cracks at inclusions in hard steels, Int J Fatigue. 18 (1996) 389-399.
DOI: 10.1016/0142-1123(96)00069-2
Google Scholar
[19]
K. Tanaka, T. Mura, A theory of fatigue crack initiation at inclusions, Metall Trans A. 13 (1982) 117-123.
DOI: 10.1007/bf02642422
Google Scholar
[20]
J.M. Hyzak, I.M. Bernstein, The effect of defects on the fatigue crack initiation process in two P/M superalloys: Part Ⅱ. Surface-subsurface transition, Metall Trans A. 13 (1982) 45-52.
DOI: 10.1007/bf02642414
Google Scholar
[21]
Z.G. Yang, J.M. Zhang, S.X. Li, et al, On the critical inclusion size of high strength steels under ultra-high cycle fatigue, Mater Sci Eng A. 427 (2006) 167-174.
DOI: 10.1016/j.msea.2006.04.068
Google Scholar
[22]
J.M. Zhang, S.X. Li, Z.G. Yang, et al, Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime, Int J Fatigue. 29 (2007) 765-771.
DOI: 10.1016/j.ijfatigue.2006.06.004
Google Scholar
[23]
T. Denda, P.L. Bretz, J.K. Tien, Inclusion size effect on the fatigue crack propagation mechanism and fracture mechanics of a superalloy, Metall Trans A. 23 (1992) 519-526.
DOI: 10.1007/bf02801169
Google Scholar
[24]
C.Q. Sun, Z.Q. Lei, J.J. Xie, et al, Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure, Int J Fatigue. 48 (2013) 19-27.
DOI: 10.1016/j.ijfatigue.2012.12.004
Google Scholar