[1]
Sun F, Zhang J Y, Marteleur M, et al. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility[J]. Scripta Materialia, 2015, 94: 17-20.
DOI: 10.1016/j.scriptamat.2014.09.005
Google Scholar
[2]
Han Y, Zeng W, Qi Y, et al. The influence of thermomechanical processing on microstructural evolution of Ti600 titanium alloy[J]. Materials Science and Engineering: A, 2011, 528(29): 8410-8416.
DOI: 10.1016/j.msea.2011.08.007
Google Scholar
[3]
Peng W, Zeng W, Wang Q, et al. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models[J]. Materials & Design, 2013, 51: 95-104.
DOI: 10.1016/j.matdes.2013.04.009
Google Scholar
[4]
Luo J, Li M Q. Strain rate sensitivity and strain hardening exponent during the isothermal compression of Ti60 alloy[J]. Materials Science and Engineering: A, 2012, 538: 156-163.
DOI: 10.1016/j.msea.2012.01.021
Google Scholar
[5]
Wanjara P, Jahazi M, Monajati H, et al. Hot working behavior of near-α alloy IMI834[J]. Materials Science and Engineering: A, 2005, 396(1): 50-60.
DOI: 10.1016/j.msea.2004.12.005
Google Scholar
[6]
Feng S, Jinshan L, Hongchao K, et al. Phase Transformation during the Continuous Cooling in Near α Titanium Alloy Ti60[J]. Rare Metal Materials and Engineering, 2015, 44(4): 848-853.
DOI: 10.1016/s1875-5372(15)30061-8
Google Scholar
[7]
Balasundar I, Raghu T, Kashyap B P. Modeling the hot working behavior of near-α titanium alloy IMI 834[J]. Progress in Natural Science: Materials International, 2013, 23(6): 598-607.
DOI: 10.1016/j.pnsc.2013.11.004
Google Scholar
[8]
Ramachandra C, Singh A K, Sarma G M K. Microstructural characterisation of near-α titanium alloy Ti-6Al-4Sn-4Zr-0. 70 Nb-0. 50 Mo-0. 40 Si[J]. Metallurgical transactions A, 1993, 24(6): 1273-1280.
DOI: 10.1007/bf02668196
Google Scholar
[9]
Jia W, Zeng W, Zhou Y, et al. High-temperature deformation behavior of Ti60 titanium alloy[J]. Materials Science and Engineering: A, 2011, 528(12): 4068-4074.
DOI: 10.1016/j.msea.2011.01.113
Google Scholar
[10]
Lu S, Xin L I, Wang K, et al. High temperature deformation behavior and optimization of hot compression process parameters in TC11 titanium alloy with coarse lamellar original microstructure[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2): 353-360.
DOI: 10.1016/s1003-6326(13)62469-3
Google Scholar
[11]
Zhao Z L, Li H, Fu M W, et al. Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing[J]. Journal of Alloys and Compounds, 2014, 617: 525-533.
DOI: 10.1016/j.jallcom.2014.08.092
Google Scholar
[12]
Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011, 32(4): 1733-1759.
DOI: 10.1016/j.matdes.2010.11.048
Google Scholar
[13]
Garofalo F. Fundamentals of creep and creep-rupture in metals[M]. Macmillan, (1965).
Google Scholar
[14]
Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
DOI: 10.1016/0001-6160(66)90207-0
Google Scholar
[15]
Prasad Y, Seshacharyulu T. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering: A, 1998, 243(1): 82-88.
DOI: 10.1016/s0921-5093(97)00782-x
Google Scholar
[16]
Rezaee M, Zarei-Hanzaki A, Ghambari M, et al. Flow Characterization of a Duplex near α Ti6242 Alloy through Interrelation of Microstructural Evolution, 3D Activation Energy Map, and Processing Map[J]. Advanced Engineering Materials, (2016).
DOI: 10.1002/adem.201500426
Google Scholar
[17]
Zeng W, Zhou Y, Zhou J, et al. Recent development of processing map theory[J]. Xiyou Jinshu Cailiao yu Gongcheng(Rare Metal Materials and Engineering), 2006, 35(5): 673-677.
Google Scholar
[18]
Huang L J, Geng L, Li A B, et al. Characteristics of hot compression behavior of Ti–6. 5 Al–3. 5 Mo–1. 5 Zr–0. 3 Si alloy with an equiaxed microstructure[J]. Materials Science and Engineering: A, 2009, 505(1): 136-143.
DOI: 10.1016/j.msea.2008.12.041
Google Scholar
[19]
Prasad Y. Recent advances in the science of mechanical processing[J]. Indian Journal of Technology, 1990, 28(6-8): 435-451.
Google Scholar