Microstructure and Mechanical Properties of Ti62421S High Temperature Titanium Alloy with Different Heat Treatments

Article Preview

Abstract:

In this paper, three different double annealing treatments were applied on the 3mm-thick Ti-6Al-2Sn-4Zr-1Mo-2Nb-0.2Si (Ti62421S) alloy plate. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile tests were used to investigate the microstructure and mechanical properties under different temperatures of Ti62421S alloy. The results show that the content of primary α phase (αp) decreases while transformed β structure (βt) increases with the increasing first-stage annealing temperature. After double annealing treatment, ordered α2 phase particles precipitate within αp and the size increases with first annealing temperature. This leads to that with increasing first annealing temperature, ultimate tensile strength (UTS) at 600~650°C increases while elongation decreases. After 1000°C/1h/AC+ 750°C/2h/AC annealing, Ti62421S alloy plate exhibits superior combination of mechanical properties at room and elevated temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

574-578

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A. 213(1996) 103-114.

Google Scholar

[2] R. Filip, K. Kubiak, W. Ziaja, J. Sieniawski, The effect of microstructure on the mechanical properties of two-phase titanium alloys, J. Mater. Process. Technol. 133(2003) 84-89.

DOI: 10.1016/s0924-0136(02)00248-0

Google Scholar

[3] R.R. Boyer, Titanium for Aerospace: Rationale and Applications, Advanced Performance Materials, 2(1995) 349-368.

Google Scholar

[4] D.F. Neal, Development and evaluation of high temperature alloy IMI834[C]. Lacombe P, Tricot R, Beranger G. Proc 6th World Conf on Titanium. Cannes, France: Les Editions de Physique, 1988: 253-258.

Google Scholar

[5] A.K. Gogia, High-temperature titanium alloys, Defence Science Journal, 55(2005) 149-173.

Google Scholar

[6] A. Madsen, H. Ghonem, Effects of aging on the tensile and fatigue behavior of the near-α Ti-1100 at room temperature and 593℃, Mater. Sci. Eng. A. 177(1994) 63-73.

DOI: 10.1016/0921-5093(94)90478-2

Google Scholar

[7] B.G. Fu, H.W. Wang, C.M. Zou, Z.J. Wei, The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys, Materials Characterization, 99(2015) 17-24.

DOI: 10.1016/j.matchar.2014.09.015

Google Scholar

[8] Z.H. Wang, C.Q. Xia, X.M. Peng, Z.H. Chen, X.X. Li, Effect of heat treatment on microstructure and mechanical properties of Ti62421s high temperature titanium alloy, Chin J. Nonferrous Met. 20(2010) 2298-2306.

Google Scholar

[9] Y. L. Wang, X.Y. Song, W. Ma, S.X. Hui, W.J. Ye. Microstructure and tensile properties of Ti-62421S alloy plate with different annealing treatments, Rare Met. 2014(online).

DOI: 10.1007/s12598-014-0349-5

Google Scholar

[10] X.Y. Song, Y.L. Wang, W.J. Zhang, S.X. Hui, W.J. Ye, Influence of Duplex Annealing on the Microstructure and Mechanical Properties of Ti62421S Titanium Alloy Plate, Materials Science Forum, 816(2015) 804-809.

DOI: 10.4028/www.scientific.net/msf.816.804

Google Scholar

[11] T. Wang Tao, H.Z. Guo, Y.W. Wang, et al. The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy[J]. Materials science and engineering A, 2011, V528: 2370-2379.

DOI: 10.1016/j.msea.2010.12.044

Google Scholar

[12] X.Y. Song, Y. Li, F. Zhang, Microstructure and mechanical properties of Nb- and Mo-modified NiTi-Al-based intermetallics processed by isothermal forging, Mater. Sci. Eng. A, 594(2014) 229-234.

DOI: 10.1016/j.msea.2013.11.070

Google Scholar

[13] J. Zhang, N. Peng, Q.J. Wang, X.N. Wang. A new aging treatment way for near α high temperature titanium alloys. J. Mater. Sci. Technol., 25(2009) 454.

Google Scholar

[14] W.J. Zhang, X.Y. Song, S.X. Hui, W.J. Ye, W.Q. Wang, Phase precipitation behavior and tensile property of a Ti-Al-Sn-Zr-Mo-Nb-W-Si titanium alloy, Rare Metals (2015) doi: 10. 1007/s12598-015-0666-3.

DOI: 10.1007/s12598-015-0666-3

Google Scholar