[1]
K. Otsuka, C.M. Wayman, Shape Memory Materials, first ed., Cambridge University Press, London , (1998).
Google Scholar
[2]
T.W. Duerig, K.N. Melton, D. Stöckel, C.M. Wayman, Engineering Aspects of Shape Memory Alloys, first ed., Btterworth-Heinemann, London , (1990).
Google Scholar
[3]
Y. Koizumi, Y. Ro, S. Nakazawa, H. Harada, NiTi-base intermetallic alloys strengthened by Al substitution, Mater. Sci. Eng. A 223 (1997) 36-41.
DOI: 10.1016/s0921-5093(96)10508-6
Google Scholar
[4]
P. Warren, Y. Murakami, Y. Koizumi, H. Harada, Phase separation in NiTi-Ni2TiAl alloy system, Mater. Sci. Eng. A 223 (1997) 17-20.
Google Scholar
[5]
X.Y. Song, Y. Li, F. Zhang, S.S. Li, NiTiAl Intermetallic Alloys Strengthened by Mo Replacement , Chinese Journal of Aeronautics 23 (2010) 715-719.
DOI: 10.1016/s1000-9361(09)60274-0
Google Scholar
[6]
L.J. Meng, Y. Li, X.Q. Zhao, J. Xu, H.B. Xu, The mechanical properties of intermetallic Ni50-xTi50Alx alloys (x=6, 7, 8, 9), Intermetallics 15 (2007) 814-818.
DOI: 10.1016/j.intermet.2006.10.038
Google Scholar
[7]
H.B. Xu, L.J. Meng, J. Xu, Y. Li, X.Q. Zhao, Mechanical properties and oxidation characteristics of TiNiAl (Nb) intermetallic, Intermetallics 15 (2007) 778-782.
DOI: 10.1016/j.intermet.2006.10.005
Google Scholar
[8]
J. Mentz, M. Bram, H.P. Buchkremer, D. Stöver, Improvement of Mechanical Properties of Powder Metallurgical NiTi Shape Memory, Adv. Eng. Mater. 8 (2006) 247-252.
DOI: 10.1002/adem.200500258
Google Scholar
[9]
H.R. Zhang, M. Gao, X.X. Tang, H. Zhang, Interaction between Ti-47Al-2Cr-2Nb alloy and Y2O3 ceramic during directional solidification, Acta. Metall. Sin. 46 (2010) 890-896. (in Chinese).
DOI: 10.3724/sp.j.1037.2010.00890
Google Scholar
[10]
L.J. Meng, Study of NiTi-Al based high temperature structural materials, PHD thesis, Beihang University, Beijing, 2006. (in Chinese).
Google Scholar
[11]
B.C. Lu, Y. Li, J. Xu, Optimal glass-forming composition and its correlation with eutectic reaction in the Ti-Ni-Al ternary system, J. Alloys Comp. 467 (2009) 261-267.
DOI: 10.1016/j.jallcom.2007.12.050
Google Scholar
[12]
J.L. Murray, The Ti-Ni system, Phase Diagrams of Binary Titanium Alloys, first ed., ASM International, Materials Park (OH), (1987).
Google Scholar
[13]
J. Frenzel, E.P. George, A. Dlouhy, Ch. Somsen, M.F. -X. Wagner, G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta. Mater. 58 (2010) 3444-3458.
DOI: 10.1016/j.actamat.2010.02.019
Google Scholar
[14]
T. Jiang, W.D. Xuan, K. Deng, Z.M. Ren, Effect of mould parameters on interface temperature gradient during directional solidification process, Foundry Technology 33 (2012) 562-564. (in Chinese).
Google Scholar
[15]
D. Bouchard, J.S. Kirkaldy, Prediction of dendrite arm spacings in unsteady- and steady-state heat Flow of unidirectionally solidified binary alloys, Metall. Mater. Trans. B 28 (1997) 651.
DOI: 10.1007/s11663-997-0039-x
Google Scholar
[16]
Q.D. Qin, Y.G. Zhao, Y.H. Liang, W. Zhou, Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite. J. Alloys Comp. 399 (2005) 106-109.
DOI: 10.1016/j.jallcom.2005.03.015
Google Scholar
[17]
F.S. Yin, X.F. Sun, J.G. Li, H.R. Guan, Z.Q. Hua, Effects of melt treatment on the cast structure of M963 superalloy, Scripta Mater. 48 (2003) 425-429.
DOI: 10.1016/s1359-6462(02)00446-3
Google Scholar
[18]
C.S. Wang, J. Zhang, L. Liu, H.Z. Fu, Microstructure evolution of directionally solidified DZ125 superalloy with melt superheating treatment, J. Alloys Comp. 508 (2010) 440-445.
DOI: 10.1016/j.jallcom.2010.08.086
Google Scholar
[19]
R. Nagarajan, K. Chattopadhyay, Intermetallic Ti2Ni/TiNi Nanocomposite by Rapid Solidification, Acta Metall. mater. 42 (1994) 947-958.
DOI: 10.1016/0956-7151(94)90289-5
Google Scholar
[20]
X.G. Geng, G. Chen, H.Z. Fu, Hysteresis Effect on Some Physical Properties of Melt Superheat, Acta. Metall. Sin. 38 (2002) 225-229. (in Chinese).
Google Scholar