Numerical Simulation and Experimental Verification of Microstructure Evolution during the Seamless Tube Extrusion of Semi-Continuous Casting AZ31 Magnesium Alloy

Article Preview

Abstract:

Based on the stress-strain curves at the temperature of 300-450 °C with strain rate of 0.01-1 s−1 by hot compression tests, the empirical dynamic recrystallization models for the semi-continuous AZ31magnesium alloy were developed. The dynamic recrystallization evolution during the seamless tube extrusion of the AZ31 Mg alloy was simulated by numerical method with the derived models and validated by experiment measurements. The results show that at certain extrusion speed the influence of the extruding temperature on the dynamic recrystallization fraction was significant. With the increase of the extruding temperature the volume fraction of dynamic recrystallization increase obviously. The predicted dynamic recrystallization fraction was in an excellent agreement with the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-85

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.E. Friedrich, B.L. Mordike, G.W. Lorimer, Magnesium Technology, second ed., Springer, New York, (2006).

Google Scholar

[2] C.J. Wang, F. Han, W.J. Zheng, Z.G. Song, Q.L. Yong, Dynamic recrystallization behavior and microstructure evolution of AISI 304N stainless steel, J. Iron. Steel. Res. Int. 20 (2013) 107-112.

DOI: 10.1016/s1006-706x(13)60185-5

Google Scholar

[3] K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Design. 111 (2016) 548-574.

DOI: 10.1016/j.matdes.2016.09.012

Google Scholar

[4] S.A. Sani, G.R. Ebrahimi, A.R.K. Rashid, Hot deformation behavior and dynamic recrystallization kinetics of AZ61 and AZ61+Sr magnesium alloys, J. Magnesium. Alloy. 4 (2016) 104-114.

DOI: 10.1016/j.jma.2016.05.001

Google Scholar

[5] G.Z. Quan, Y. Shi, Y.X. Wang, B.S. Kang, T.W. Ku, W.J. Song, Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data, Mat. Sci. Eng. A-Struct. 528 (2011) 8051-8059.

DOI: 10.1016/j.msea.2011.07.064

Google Scholar

[6] M. Roostaei, M.H. Parsa, R. Mahmudi, H. Mirzadeh, Hot compression behavior of GZ31 magnesium alloy, J. Alloy. Compd. 631 (2015) 1-6.

DOI: 10.1016/j.jallcom.2014.11.188

Google Scholar

[7] K. Suresh, K.P. Rao, Y.V. R. K. Prasad, N. Hort, K.U. Kainer, Effect of calcium addition on the hot working behavior of as-cast AZ31 magnesium alloy, Mat. Sci. Eng. A-Struct. 588 (2013) 272-279.

DOI: 10.1016/j.msea.2013.09.031

Google Scholar

[8] Y.J. Qin, Q.L. Pan, Y.B. He, W.B. Li, X.Y. Liu, X. Fan, Modeling of flow stress for magnesium alloy during hot deformation, Mat. Sci. Eng. A-Struct. 527 (2010) 2790-2797.

DOI: 10.1016/j.msea.2010.01.035

Google Scholar

[9] S.J. Liang, Z.Y. Liu, E.D. Wang, Simulation of extrusion process of AZ31 magnesium alloy, Mat. Sci. Eng. A-Struct. 499(2009) 221-224.

Google Scholar

[10] S. Y. Lee, D. C. Ko, S. K. Lee, M. S. Joeng, D. H. Kim, Y.J. Cho, Porthole extrusion process design for magnesium-alloy bumper back beam by using FE analysis and extrusion limit diagram, Adv. Mech. Eng. 6 (2014) 120745-120745.

DOI: 10.1155/2014/120745

Google Scholar

[11] I.K. Lee, S.Y. Lee, S.K. Lee, M.S. Jeong, H.K. Da, J.W. Lee, Y.J. Cho, Porthole extrusion process design for magnesium alloy bumper back beam, Int. J. Precis. Eng. Man. 16 (2015) 1423-1428.

DOI: 10.1007/s12541-015-0187-x

Google Scholar

[12] D. Zhang, G. Chen, The numerical simulation for extrusion forming of magnesium alloy pipes, Physics. Procedia. 25 (2012) 125-129.

DOI: 10.1016/j.phpro.2012.03.060

Google Scholar

[13] G. Liu, J. Zhou, J. Duszczyk, Process optimization diagram based on FEM simulation for extrusion of AZ31 profile, T. Nonferr. Metal. Soc. 18 (2008) 247-251.

DOI: 10.1016/s1003-6326(10)60211-7

Google Scholar

[14] L.X. Li, Y. Lou, Ram speed profile design for isothermal extrusion of AZ31 magnesium alloy by using FEM simulation, T. Nonferr. Metal. Soc. 18(2008) 252-256.

DOI: 10.1016/s1003-6326(10)60212-9

Google Scholar

[15] T. Lin, S.H. Zhang, H.W. Song, M. Cheng, J.Q. Sun, M. Cheng, Deformation analysis of hot stamping tools by thermal-fluid-mechanical coupled approach based on MpCCI, Mater. Res. Innov. 18 (2014) 1068-1073.

DOI: 10.1179/1432891714z.000000000822

Google Scholar

[16] T. Lin, S.H. Zhang, H.W. Song, M. Cheng, W.J. Liu, Cooling systems design in hot stamping tools by a thermal-fluid-mechanical coupled approach, Adv. Mech. Eng 6 (2015) 545727-545727.

DOI: 10.1155/2014/545727

Google Scholar

[17] H.J. Mcqueen, N.D. Ryan, Constitutive analysis in hot working, Mat. Sci. Eng. A-Struct. 322 (2002) 43-63.

Google Scholar

[18] B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, F.S. Pan, Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg-2. 0Zn-0. 3Zr alloy based on true stress-strain curves, Mat. Sci. Eng. A-Struct. 560 (2013) 727-733.

DOI: 10.1016/j.msea.2012.10.025

Google Scholar

[19] S.I. Kim, Y.C. Yoo, Dynamic recrystallization behavior of AISI 304 stainless steel, Mat. Sci. Eng. A-Struct. 311 (2001) 108-113.

DOI: 10.1016/s0921-5093(01)00917-0

Google Scholar

[20] G. Ji, F. Li, Q. Li, H. Li, Z. Li, Research on the dynamic recrystallization kinetics of Aermet100 steel, Mat. Sci. Eng. A-Struct. 527 (2010) 2350-2355.

DOI: 10.1016/j.msea.2009.12.001

Google Scholar

[21] H.Z. Li, H.J. Wang, Z. Li, C.M. Liu, H.T. Liu, Flow behavior and processing map of as-cast Mg-10Gd-4. 8Y- 2Zn- 0. 6Zr alloy, Mat. Sci. Eng. A-Struct. 528 (2010) 154-160.

DOI: 10.1016/j.msea.2010.08.090

Google Scholar