Effect of Cooling Rate on Hot Tearing Behavior of Mg-9Al-1Zn-0.8Ce Alloy

Article Preview

Abstract:

The influence of cooling rate (1.5, 0.3 and 0.1 °C/s) on the hot tearing susceptibility (HTS) of Mg-9Al-1Zn-0.8Ce alloy was investigated by taking advantage of numerical simulation and experimental methods. Filling and solidification processes were observed directly using AnyCasting software. The results demonstrated that the reduction of cooling rate increases the residual melt modulus, deteriorate strain and stress concentration at last stage of solidification, and decrease the hot tearing resistance of alloy finally. The maximum value of HTS was obtained at the average cooling rate of 0.1 °C/s owing to the coarse microstructures and bulk Al11Ce3. The minimum value of HTS appeared at the rate of 1.5 °C/s thanks to the finest microstructures and a large amount of eutectic. With the increase of cooling rate, hot tearing susceptibility of the alloy shows a rapid reduction at beginning, and a slow decline followed. Besides, morphology of fracture surface and distribution of secondary phase were further discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-70

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Reis, Y. Houbaert, Zhian Xu, Rob Van Tol , A.D. Santos, J.F. Duarte, A. B. Magalhães, Modeling of shrinkage defects during solidification of long and short freezing materials, Journal of materials processing technology. 202 (2008) 428-434.

DOI: 10.1016/j.jmatprotec.2007.10.030

Google Scholar

[2] T. Subroto, A. Miroux, L. Bouffier, C. Josserond, L. Salvo, M. Suéry, D.G. Eskin, L. Katgerman, Formation of hot tear under controlled solidification conditions, Metallurgical and Materials Transactions A. 45 (2014) 2855-2862.

DOI: 10.1007/s11661-014-2220-6

Google Scholar

[3] M. M'Hamdi, A. Mo, On modelling the interplay between microporosity formation and hot tearing in aluminium direct-chill casting, Materials Science and Engineering: A. 413 (2005) 105-108.

DOI: 10.1016/j.msea.2005.09.050

Google Scholar

[4] C. Monroe, C. Beckermann, Development of a hot tear indicator for steel castings, Materials Science and Engineering: A. 413-414 (2005) 30-36.

DOI: 10.1016/j.msea.2005.09.047

Google Scholar

[5] M.R. Ridolfi, Hot tearing modeling: a microstructural approach applied to steel solidification, Metallurgical and Materials Transactions B. 45 (2014) 1425-1438.

DOI: 10.1007/s11663-014-0068-1

Google Scholar

[6] F. D'Elia, C. Ravindran, D. Sediako, K.U. Kainer, N. Hort, Hot tearing mechanisms of B206 aluminum-copper alloy, Materials & Design. 64 (2014) 44-55.

DOI: 10.1016/j.matdes.2014.07.024

Google Scholar

[7] M.R. Nasr Esfahani, B. Niroumand, Study of hot tearing of A206 aluminum alloy using Instrumented Constrained T-shaped Casting method, Materials Characterization. 61 (2010) 318-324.

DOI: 10.1016/j.matchar.2009.12.015

Google Scholar

[8] K. Maile, H. Theofel, C. Weichert, K-H. Mayer, C. Gerdes, and S. Sheng, Assessment of hot tears in cast steel components, International journal of pressure vessels and piping. 78 (2001) 865-874.

DOI: 10.1016/s0308-0161(01)00101-6

Google Scholar

[9] D.G. Eskin, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminum alloys, Progress in Materials Science. 49 (2004) 629-711.

DOI: 10.1016/s0079-6425(03)00037-9

Google Scholar

[10] F.S. Pan, M.B. Yang, X.H. Chen, A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys, Journal of Materials Science & Technology. (2016).

DOI: 10.1016/j.jmst.2016.07.001

Google Scholar

[11] M.A. Easton, M.A. Gibson, S. Zhu, T.B. Abbott, An a priori hot-tearing indicator applied to die-cast magnesium-rare earth alloys, Metallurgical and Materials Transactions A. 45 (2014) 3586-3595.

DOI: 10.1007/s11661-014-2272-7

Google Scholar

[12] Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, N. Hort, Experimental and numerical analysis of hot tearing susceptibility for Mg-Y alloys, Journal of Materials Science. 49 (2014) 353-362.

DOI: 10.1007/s10853-013-7712-z

Google Scholar

[13] R.A. Dodd, W.A. Pollard, J.W. Meier, Hot tearing of magnesium casting alloys, Trans. AFS. 65 (1957) 100-118.

Google Scholar

[14] A. Srinivasan, Z. Wang, Y. Huang, F. Beckmann, K.U. Kainer, N. Hort, Hot tearing susceptibility of magnesium-gadolinium binary alloys, Transactions of the Indian Institute of Metals. 65 (2012) 701-706.

DOI: 10.1007/s12666-012-0210-1

Google Scholar

[15] A. Srinivasan, Z. Wang, Y. Huang, F. Beckmann, K.U. Kainer, N. Hort, Hot tearing characteristics of binary Mg-Gd alloy castings, Metallurgical and Materials Transactions A. 44 (2013) 2285-2298.

DOI: 10.1007/s11661-012-1593-7

Google Scholar

[16] Y.S. Wang, Q.D. Wang, G.H. Wu, Y.P. Zhu, W. J Ding, Hot-tearing susceptibility of Mg-9Al-xZn alloy, Materials Letters. 57 (2002) 929-934.

DOI: 10.1016/s0167-577x(02)00898-4

Google Scholar

[17] G. Cao, S. Kou, Hot cracking of binary Mg-Al alloy castings, Materials Science and Engineering A. 417 (2006) 230-238.

DOI: 10.1016/j.msea.2005.10.050

Google Scholar

[18] H.S. Cai, F. Guo, X. S Ren, J. Su, B.D. Chen, Effects of cerium on as-cast microstructure of AZ91 magnesium alloy under different solidification rates, Journal of Rare Earths. 34 (2016) 736-741.

DOI: 10.1016/s1002-0721(16)60085-6

Google Scholar

[19] C.F. Li, Y.H. Liu, Q. Wang, L.N. Zhang, D.W. Zhang, Study on the corrosion residual strength of the 1. 0 wt. % Ce modified AZ91 magnesium alloy, Materials Characterization. 61 (2010) 123-127.

DOI: 10.1016/j.matchar.2009.09.014

Google Scholar

[20] S.F. Liu, B. Li, X.H. Wang, W. Su, H. Han, Refinement effect of cerium, calcium and strontium in AZ91 magnesium alloy, Journal of materials processing technology. 209 (2009) 3999-4004.

DOI: 10.1016/j.jmatprotec.2008.09.020

Google Scholar