Thermal Stability of Nanocrystalline Ti6Al4V Produced by Surface Mechanical Attrition Treatment

Article Preview

Abstract:

A pollution-free nanocrystalline layer was prepared on the surface of Ti6Al4V by surface mechanical attrition treatment (SMAT). The nanocrystalline samples were vacuum annealed at various temperatures and for different periods of time. The microstructure and thermal stability were characterized by X-ray (XRD), scanning electron microscopy (SEM) and, transmission electron microscopy (TEM). The results showed that the nanocrystalline Ti6Al4V presented a satisfactory thermal stability with the annealed temperature below 650°C. The critical growth temperature for nanocrystalline Ti6Al4V is 100°C higher than that for pure titanium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-46

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Gleiter, Prog. Mater. Sci. 33(1989)223.

Google Scholar

[2] L. Lu, M. L. Sui, Science 287(2000)1463.

Google Scholar

[3] N. R. Tao, Z. B. Wang, W. P. Tong, M. L. Sui, J. Lu, K. Lu, Acta Mater. 50(2002)4603-4616.

Google Scholar

[4] K. Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu, Acta Mater. 52(2004)4101-4110.

DOI: 10.1016/j.actamat.2004.05.023

Google Scholar

[5] C. H. Chen, R. M. Ren, X. J. Zhao, Y. J. Zhang, Tran. Nonferrous Met. Soc. China 14(2004)215-218.

Google Scholar

[6] G. M. Y. Luo, C. H. Chen, R. M. Ren, W. Wu, Z. Q. Li, Y. S. Zeng, Trans. Nonferrous Met. Soc. China 14(2004)204-209.

Google Scholar

[7] S. Qu, C. X. Huang, Y. L. Gao, G. Yang, S. D. Wu, Q. S. Zang, Z. F. Zhang, Mater. Sci. Eng. A 475(2008)207-216.

Google Scholar

[8] W. J. Kim, C. W. An, Y. S. Kim, S. I. Hong, Sci. Mater. 47(2002)39-44.

Google Scholar

[9] F. Y. Dong, P. Zhang, J. C. Pang, Y. B. Ren, K, Yang, Z. F. Zhang, Sci. Mater. 96(2015)5-8.

Google Scholar

[10] Y. Liu, B. Jin, J. Lu, Mater. Sci. Eng. A 636(2015)446-451.

Google Scholar

[11] C. Sun, Y. Yang, Y. Liu, K. T. Hartwig, H. Wang, S. A. Maloy, T. R. Allen, X. Zhang, Mater. Sci. Eng. A 542(2012)64-70.

Google Scholar

[12] W. B. Liu, C. Zhang, Z. G. Yang, Z. X. Xia, Appl. Surf. Sci. 292(2014)556-562.

Google Scholar

[13] Y. J. Mai, X. H. Jie, L. L. Liu, N. Yu, X. X. Zheng, Appl. Surf. Sci. 256(2010)1972-(1975).

Google Scholar

[14] W. Chen, Q. Y. Sun, L. Xiao, J. Sun, Mater. Sci. Eng. A 536(2012)223-230.

Google Scholar

[15] V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, R. Z. Valiev, Mater. Sci. Eng. A343(2003)43-50.

Google Scholar

[16] G. Lutjering, J. C. Williams. Titanium, second ed., Springer Verlag. Berlin, (2007).

Google Scholar

[17] R. Valiev, Nat. Mater. 3(2004)511-516.

Google Scholar

[18] K. Lu, J. Lu, Journal of Materials Science and technology, 1999, 15(3): 193-197.

Google Scholar