Microstructure and Mechanical Properties of Mg-Er-Zn Alloys with LPSO Phase

Article Preview

Abstract:

As-cast Mg-3Er-xZn (x = 0, 0.5, 1 and 2 at.%) alloys were prepared by a cast ingot metallurgy process. The effect of Zn contents on the microstructure and phase constitution of the alloys was investigated by optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and transmission electronic microscope (TEM). The results revealed that the as-cast Mg-3Er alloy mainly consisted of α-Mg phase and MgEr eutectic phase. Typically, a small amounts of LPSO phase was precipitated at grain boundaries by adding 0.5 at.% Zn into Mg-3Er alloy. With the addition of 1 at.%Zn, the volume fraction of LPSO phase increased obviously. When the addition of Zn increased to 2 at.%, the volume fraction of LPSO phase decreases and Mg8ZnEr phase forms at grain boundaries. Tensile test indicated that Mg-3Er-1Zn alloy exhibits the excellent mechanical properties. The tensile strength, yield strength and elongation of Mg-3Er-1Zn alloy are 213 MPa, 187.6 MPa and 5.52%, increased by 38.8%, 60% and 3.19%, respectively, corresponding to the alloy without Zn addition. The excellent mechanical properties could be attributed to the introduction of Zn element in alloys, which leads to the strengthening of LPSO phase and grain refinement of α-Mg.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-60

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Datta, A., Waghmare, U. V. and Ramamurty, U. Structure and stacking faults in layered Mg–Zn–Y alloys: A first-principles study, Acta Mater. 56(2008) 2531-2539.

DOI: 10.1016/j.actamat.2008.01.046

Google Scholar

[2] Chen, Q., Shu, D., Zhao, Z., et al. Microstructure development and tensile mechanical properties of Mg–Zn–RE–Zr magnesium alloy, Mater. Des. 40(2012) 488-496.

DOI: 10.1016/j.matdes.2012.03.059

Google Scholar

[3] Bae, D. H., Lee, M. H., Kim, K. T., et al. Application of quasicrystalline particles as a strengthening phase in Mg–Zn–Y alloys, J. Alloy. Compd. 342(2002) 445-450.

DOI: 10.1016/s0925-8388(02)00273-6

Google Scholar

[4] Liu, Y., Yuan, G., Lu, C., et al. Stable icosahedral phase in Mg–Zn–Gd alloy, Scr. Mater. 55(2006) 919-922.

DOI: 10.1016/j.scriptamat.2006.07.035

Google Scholar

[5] Xu, D. K., Tang, W. N., Liu, L., et al. Effect of W-phase on the mechanical properties of as-cast Mg–Zn–Y–Zr alloys, J. Alloy. Compd. 461(2008) 248-252.

DOI: 10.1016/j.jallcom.2007.07.096

Google Scholar

[6] Matsuda, M., Ii, S., Kawamura, Y., et al. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy, Mater. Sci. Eng. A. 393(2005) 269-274.

DOI: 10.1016/j.msea.2004.10.040

Google Scholar

[7] Abe, E., Kawamura, Y., Hayashi, K., et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM, Acta Mater. 50(2002) 3845-3857.

DOI: 10.1016/s1359-6454(02)00191-x

Google Scholar

[8] Yamasaki, M. and Kawamura, Y. Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase, Scr. Mater. 60(2009) 264-267.

DOI: 10.1016/j.scriptamat.2008.10.022

Google Scholar

[9] Wang, Q., Du, W., Liu, K., et al. Microstructure, texture and mechanical properties of as-extruded Mg–Zn–Er alloys, Mater. Sci. Eng. A. 581(2013) 31-38.

DOI: 10.1016/j.msea.2013.05.055

Google Scholar

[10] Zhu, Y. M., Morton, A. J. and Nie, J. F. Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys, Acta Mater. 60(2012) 6562-6572.

DOI: 10.1016/j.actamat.2012.08.022

Google Scholar

[11] Itoi, T., Seimiya, T., Kawamura, Y., et al. Long period stacking structures observed in Mg97Zn1Y2 alloy, Scr. Mater. 51(2004) 107-111.

DOI: 10.1016/j.scriptamat.2004.04.003

Google Scholar

[12] Kawamura, Y., Kasahara, T., Izumi, S., et al. Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scr. Mater. 55(2006) 453-456.

DOI: 10.1016/j.scriptamat.2006.05.011

Google Scholar

[13] Li, Q., Wang, Q., Wang, Y., et al. Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy, J. Alloy. Compd. 427(2007) 115-123.

DOI: 10.1016/j.jallcom.2006.02.054

Google Scholar

[14] Leng, Z., Pan, H., Guo, C., et al. Asymmetry of tensile-compressive mechanical behaviors of Mg-RE-Zn alloy strengthened by long period stacking ordered phase, Mater. Sci. Eng. A. 667(2016) 468-472.

DOI: 10.1016/j.msea.2016.04.037

Google Scholar

[15] Zhang, J., Leng, Z., Liu, S., et al. Microstructure and mechanical properties of Mg–Gd–Dy–Zn alloy with long period stacking ordered structure or stacking faults, J. Alloy. Compd. 509(2011) 7717-7722.

DOI: 10.1016/j.jallcom.2011.04.089

Google Scholar

[16] Liu, W., Zhang, J., Xu, C., et al. High-performance extruded Mg89Y4Zn2Li5 alloy with deformed LPSO structures plus fine dynamical recrystallized grains, Mater. Des. (2016), 110 1-9.

DOI: 10.1016/j.matdes.2016.07.111

Google Scholar

[17] Shao, X. H., Yang, Z. Q. and Ma, X. L. Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure, Acta Mater. 58(2010) 4760-4771.

DOI: 10.1016/j.actamat.2010.05.012

Google Scholar