Microstructure, Mechanical and Corrosion Properties of 5E61 Alloy

Article Preview

Abstract:

The microstructure of Al-6Mg-0.9Mn-0.07Zr-0.2Er (wt.%), registered as 5E61 alloy, were investigated using optical microscopy, scanning electron microscopy and transmission electron microscopy. The results showed that the addition of 0.2 wt.% Er can refine the dendritic structure and form fine and coherent L12 structured Al3(ErxZr1-x) precipitates in the alloy. After a two-stage homogenization (280°C/10h, 460°C/36h), the recrystallization temperature of the alloy with 0.2 wt.% Er is about 15°C higher than that of the alloy without Er. The better recrystallization resistance may be related to the Al3(ErxZr1-x) precipitates, which can pin on dislocations and sub-grain boundaries. The hardness of the cold-rolled alloy with 0.2 wt.% Er is 143HV, which is 5% higher than the alloy without Er. The exfoliation corrosion and nitric acid mass loss test were also performed. The exfoliation corrosion of the alloy is N grade, and the mass loss is only 9.84mg/cm2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-34

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] He Z, Peng Y, Yin Z, et al. Comparison of FSW and TIG welded joints in Al-Mg-Mn-Sc-Zr alloy plates[J]. Transactions of Nonferrous Metals Society of China. 2011, 21(8): 1685-1691.

DOI: 10.1016/s1003-6326(11)60915-1

Google Scholar

[2] Chang S Y, Ahn B D, Hong S K, et al. Tensile deformation characteristics of a nano-structured 5083 Al alloy[J]. Journal of Alloys and Compounds. 2005, 386(1-2): 197-201.

DOI: 10.1016/j.jallcom.2004.03.148

Google Scholar

[3] Wen S P, Xing Z B, Huang H, et al. The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy[J]. Materials Science and Engineering: A. 2009, 516(1-2): 42-49.

DOI: 10.1016/j.msea.2009.02.045

Google Scholar

[4] Filatov Y A, Yelagin V I, Zakharov V V. New Al–Mg–Sc alloys[J]. Materials Science and Engineering: A. 2000, 280(1): 97-101.

DOI: 10.1016/s0921-5093(99)00673-5

Google Scholar

[5] Goswami R, Spanos G, Pao P S, et al. Microstructural evolution and stress corrosion cracking behavior of Al-5083[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science. 2011, 42A(2): 348-355.

DOI: 10.1007/s11661-010-0262-y

Google Scholar

[6] Elhadari H A, Patel H A, Chen D L, et al. Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 2011, 528(28): 8128-8138.

DOI: 10.1016/j.msea.2011.07.018

Google Scholar

[7] Lathabai S, Lloyd P G. The effect of scandium on the microstructure, mechanical properties and weldability of a cast Al-Mg alloy[J]. Acta Materialia. 2002, 50(PII S1359-6454(02)00259-817): 4275-4292.

DOI: 10.1016/s1359-6454(02)00259-8

Google Scholar

[8] Venkateswarlu K, Pathak L C, Ray A K, et al. Microstructure, tensile strength and wear behaviour of Al-Sc alloy[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 2004, 383(2): 374-380.

DOI: 10.1016/j.msea.2004.05.075

Google Scholar

[9] Davydov V G, Rostova T D, Zakharov V V, et al. Scientific principles of making an alloying addition of scandium to aluminum alloys[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 2000, 280(1): 30-36.

DOI: 10.1016/s0921-5093(99)00652-8

Google Scholar

[10] Kendig K L, Miracle D B. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy[J]. Acta Materialia. 2002, 50(PII S1359-6454(02)00258-616): 4165-4175.

DOI: 10.1016/s1359-6454(02)00258-6

Google Scholar

[11] Yin Z M, Pan Q L, Zhang Y H, et al. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 2000, 280(1): 151-155.

DOI: 10.1016/s0921-5093(99)00682-6

Google Scholar

[12] Yin Z M, Pan Q L, Zhang Y H, et al. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 2000, 280(1): 151-155.

DOI: 10.1016/s0921-5093(99)00682-6

Google Scholar

[13] Nie Z R, Jin T A, Fu J B, et al. Research on rare earth in aluminum[M]. Materials Science Forum, Gregson P J, Harris S J, 2002: 396-4, 1731-1735.

Google Scholar

[14] Nie Z R, Jin T N, Zou J X, et al. Development on research of advanced rare-earth aluminum alloy[J]. Transactions of Nonferrous Metals Society of China. 2003, 13(3): 509-514.

Google Scholar

[15] Yang J J, Nie Z R, Jin T N, et al. Effect of trace rare earth element Er on high pure Al[J]. Transactions of Nonferrous Metals Society of China. 2003, 13(5): 1035-1039.

DOI: 10.1016/s1003-6326(06)60105-2

Google Scholar

[16] Wen S P, Gao K Y, Li Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy[J]. Scripta Materialia. 2011, 65(7): 592-595.

DOI: 10.1016/j.scriptamat.2011.06.033

Google Scholar

[17] Van Dalen M E, Dunand D C, Seidman D N. Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys[J]. Acta Materialia. 2005, 53(15): 4225-4235.

DOI: 10.1016/j.actamat.2005.05.022

Google Scholar