Effect of Deformation Temperature on Texture Evolution of TLM Titanium Alloy

Article Preview

Abstract:

In this work the texture evolution of a near β Ti-3Zr-2Sn-3Mo-25Nb (TLM) biomedical titanium alloy in hot compression at different deformation temperatures from 750°C to 850°C has been investigated. The XRD examination shows that the samples of hot deformation consist of β phase only. The development of texture has been explained in terms of orientation distribution functions (ODFs) of α and γ fibres. Compared with cold compression of TLM alloy, the texture changes obviously with the increase of deformation temperature. The {111}<110> texture shows the feature that weaken firstly and then strengthen, while the {111}<112> texture shows an opposite tendency. Specifically, the prominent texture components change to the {111}<110> and {111}<112> at the deformation temperature of 850°C, which are the same texture type and the nearly level of orientation density with the starting materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-23

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Lonardelli, N. Gey, H. -R. Wenk, M. Humbert, et al., Acta Mater. 55 (2007) 5718-5727.

Google Scholar

[2] M.R. Bache, W.J. Evans, Mater. Sci. Eng. A 319 (2001) 409.

Google Scholar

[3] A.N. Kalinyuk, N.P. Trigub, V.N. Zamkov, O.M. Ivasishin, et al., Mater. Sci. Eng. A 346 (2003) 178.

Google Scholar

[4] Z.T. Yu, L. Zhou, Mater. Sci. Eng. A 438-440 (2006) 391-394.

Google Scholar

[5] Z.T. Yu, G. Wang, X.Q. Ma, et al., Mater. Sci. Forum 6180-619 (2009) 303-306.

Google Scholar

[6] Z.T. Yu, G. Wang, X. Ma, Y. Zhang, et al., Mater. Sci. Eng. A 513-514 (2009) 233-238.

Google Scholar

[7] Z.T. Yu, L. Zhou, L.J. Luo, et al., Chin. J. Rare Met. 30 (21) (2006) 226-230.

Google Scholar

[8] Z.T. Yu, L. Zhou, L.J. Luo, et al., Key Engineering Materials, Advanced Biomaterials VI 288-289 (2004) 595-598.

Google Scholar

[9] X.Q. Ma, Z.T. Yu, J.L. Niu, et al., Chin. J. Nonferrous Met. 1 (30) (2010) 410-413.

Google Scholar

[10] S. Yu, Z.T. Yu, L.J. Luo, Rare Met. Mater. Eng. 4 (37) (2008) 546-550.

Google Scholar

[11] N. Bozzolo, N. Dewobroto, T. Grosdidier, Mater. Sci. Eng. A 397 (2005) 346-355.

Google Scholar

[12] Y.C. Shu, K. Bhattacharya, Acta Mater. 46 (1998) 5457-5473.

Google Scholar

[13] S. Miyazaki, V.H. No, K. Kitamura, et al., Int. J. Plast. 16 (2000) 1135-1154.

Google Scholar

[14] S.W. Banovic, M.D. Vaudin, T.H. Gnaeupel-Herold, et al., Mater. Sci. Eng. A 380 (2004) 155-170.

Google Scholar

[15] Satyam Suwas, B. Beausir, L.S. To'th, Acta Mater. 59 (2011) 1121-1133.

Google Scholar

[16] N. Bozzolo, N. Dewobroto, T. Grosdidier, et al., Mater. Sci. Eng. A 397 (2005) 346-355.

Google Scholar

[17] W.J. Kim, S.J. Yoo, H.T. Jeong, et al., Scr. Mater. 64 (2011) 49-52.

Google Scholar

[18] H.Y. Kim, T. Sasaki, K. Okutsu, et al., Acta Mater. 54 (2006) 423-433.

Google Scholar

[19] Y.D. Wang, D.Y. Cong, R. Lin Peng, et al., J. Mater. Res. 21 (2006) 691-696.

Google Scholar

[20] H. Inoue, S. Fukushima, N. Inakazu, Mater. Trans 33 (1992) 129.

Google Scholar

[21] A.K. Singh, Amit Bhattacharjee, A.K. Gogia, Mater. Sci. Eng. A 270 (1999) 225-230.

Google Scholar

[22] F.J. Humphreys, M. Hatherly, Recrystallisation and Related Phenomena, Elsevier, Oxford, (1995).

Google Scholar

[23] D. Raabe, G. Schlenkert, H. Weisshaupt, et al., Mater. Sci. Technol. 10 (1994) 299.

Google Scholar

[24] X.F. Bai, Y.Q. Zha, Y.S. Zhang, et al. Mater. Sci. Eng. A 588 (2013) 29-33.

Google Scholar

[25] L.Q. Wang, W.J. Lu, J.N. Qin, et al., Mater. Sci. Eng. A 491 (2008) 372-377.

Google Scholar

[26] S.C. Xua, L.D. Wang, P.T. Zhao, et al. Mater. Sci. Eng. A 533 (2012) 82-86.

Google Scholar