[1]
V.G. Gavriljuk, H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer-Verlag, (1999).
Google Scholar
[2]
H. Dong, S-phase surface engineering of Fe–Cr, Co–Cr and Ni–Cr alloys, Int. Mater. Rev. 55 (2010) 65-98.
DOI: 10.1179/095066009x12572530170589
Google Scholar
[3]
M.K. Lei, in Plasma Surface Engineering Research and its Practical Applications (edited by R. Wei), Chapter 11, Research Signpost, (2008).
Google Scholar
[4]
H.J. Grabke, The Role of Nitrogen in the Corrosion of Iron and Steels, ISIJ Int. 36 (1996) 777-786.
DOI: 10.2355/isijinternational.36.777
Google Scholar
[5]
R.F.A. Jargelius-Pettersson, Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels, Corros. Sci. 41 (1999) 1639-1664.
DOI: 10.1016/s0010-938x(99)00013-x
Google Scholar
[6]
H. Baba, T. Kodama, Y. Katada, Role of nitrogen on the corrosion behavior of austenitic stainless steels, Corros. Sci. 44 (2002) 2393–2407.
DOI: 10.1016/s0010-938x(02)00040-9
Google Scholar
[7]
M.K. Lei, X.M. Zhu, Role of Nitrogen in Pitting Corrosion Resistance of a High-Nitrogen Face-Centered-Cubic Phase Formed on Austenitic Stainless Steel, J. Electrochem. Soc. 152 (2005) B291-B295.
DOI: 10.1149/1.1939245
Google Scholar
[8]
K. Osozawa, N. Okato, Y. Fukase, Effects of Alloying Elements on the Pitting Corrosion of Stainless Steels, Corros. Eng. (Boshoku-Gijyutsu) 24 (1975) 1.
DOI: 10.3323/jcorr1974.24.1_1
Google Scholar
[9]
A.S. Vanini, J.P. Audouard, P. Marcus, The role of nitrogen in the passivity of austenitic stainless steels, Corros. Sci. 36 (1994) 1825-1834.
DOI: 10.1016/0010-938x(94)90021-3
Google Scholar
[10]
C.R. Clayton, G.P. Halada, J. R. Kearns, Passivity of high-nitrogen stainless alloys: the role of metal oxyanions and salt films, Mater. Sci. Eng. A 198 (1995) 135-144.
DOI: 10.1016/0921-5093(95)80068-6
Google Scholar
[11]
I. Olefjord, L. Wegrelius, The influence of nitrogen on the passivation of stainless steels, Corros. Sci. 38 (1996) 1203-1220.
DOI: 10.1016/0010-938x(96)00018-2
Google Scholar
[12]
L. Wegrelius, F. Falkenberg, I. Olefjord, Passivation of Stainless Steels in Hydrochloric Acid. J. Electrochem. Soc. 146 (1999) 1397-1406.
DOI: 10.1149/1.1391777
Google Scholar
[13]
X.C. Tan, J.C. Zhou, First-principles study of oxygen adsorption on Fe (1 1 0) surface, Appl. Surf. Sci. 258 (2012) 8484-8491.
DOI: 10.1016/j.apsusc.2012.04.162
Google Scholar
[14]
M. Busch, M. Gruyters, H. Winter, FeO (111) formation by exposure of Fe (110) to atomic and molecular oxygen, Surf. Sci. 600 (2006) 4166-4169.
DOI: 10.1016/j.susc.2006.05.003
Google Scholar
[15]
N.K. Das, K. Suzuki, Y. Takeda, K. Ogawa, T. Shoji, Quantum chemical molecular dynamics study of stress corrosion cracking behavior for fcc Fe and Fe–Cr surfaces, Corros. Sci. 50 (2008) 1701-1706.
DOI: 10.1016/j.corsci.2008.01.032
Google Scholar
[16]
N.K. Das, K. Suzuki, K. Ogawa, T. Shoji, Early stage SCC initiation analysis of fcc Fe–Cr–Ni ternary alloy at 288 C: a quantum chemical molecular dynamics approach, Corros. Sci. 51 (2009) 908-913.
DOI: 10.1016/j.corsci.2009.01.005
Google Scholar
[17]
N.K. Das, T. Shoji, A density functional study of atomic oxygen and water molecule adsorption on Ni (1 1 1) and chromium-substituted Ni (1 1 1) surfaces, Appl. Surf. Sci. 258 (2011) 442-447.
DOI: 10.1016/j.apsusc.2011.08.107
Google Scholar
[18]
G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48 (1993) 13115-13118.
DOI: 10.1103/physrevb.48.13115
Google Scholar
[19]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[20]
P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[21]
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.
DOI: 10.1103/physrevb.59.1758
Google Scholar
[22]
J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.
DOI: 10.1103/physrevb.45.13244
Google Scholar
[23]
H.J. Monkhorst, D.J. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[24]
T.P.C. Klaver, D.J. Hepburn, G.J. Ackland, Defect and solute properties in dilute Fe-Cr-Ni austenitic alloys from first principles, Phys. Rev. B 85 (2012) 174111.
DOI: 10.1103/physrevb.85.174111
Google Scholar
[25]
D.J. Hepburn, D. Ferguson, S. Gardner, G.J. Ackland, First-principles study of helium, carbon, and nitrogen in austenite, dilute austenitic iron alloys, and nickel, Phys. Rev. B 88 (2013) 024115.
DOI: 10.1103/physrevb.88.024115
Google Scholar
[26]
J.B. Piochaud, T.P.C. Klaver, G. Adjanor, First-principles study of point defects in an fcc Fe-10Ni-20Cr model alloy, Phys. Rev. B 89 (2014) 024101.
DOI: 10.1103/physrevb.89.024101
Google Scholar
[27]
M.K. Lei, X.M. Zhu, Chemical state of nitrogen in a high nitrogen face-centered-cubic phase formed on plasma source ion nitrided austenitic stainless steel, J. Vac. Sci. Technol. A 22 (2004) 2067 - (2070).
DOI: 10.1116/1.1786305
Google Scholar
[28]
G. Henkelman, A. Arnaldsson, H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 (2006) 354-360.
DOI: 10.1016/j.commatsci.2005.04.010
Google Scholar
[29]
W. Tang, E. Sanville, G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter 21 (2009) 084204.
DOI: 10.1088/0953-8984/21/8/084204
Google Scholar