Effects of Interstitial Nitrogen Atoms on Atomic Oxygen Adsorption on Fe (001) Surface from Ab Initio Calculations

Article Preview

Abstract:

The effects of interstitial nitrogen atoms on the adsorption of atomic oxygen on fcc Fe (001) surface have been studied using ab initio density functional theory calculations to understand the initial stage of oxidation on nitrogenous austenitic stainless steel. It has been found out that the N atoms can improve the adsorption ability of the O atom at the hollow site on the surface, and thus promote the rapid passivation of nitrogenous austenitic stainless steel. This improvement is possibly because the Coulombic interactions between the O atom and the neighboring Fe and Cr atoms are enhanced due to the electron transfer from the Fe and Cr atoms to the N atoms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

849-855

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.G. Gavriljuk, H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer-Verlag, (1999).

Google Scholar

[2] H. Dong, S-phase surface engineering of Fe–Cr, Co–Cr and Ni–Cr alloys, Int. Mater. Rev. 55 (2010) 65-98.

DOI: 10.1179/095066009x12572530170589

Google Scholar

[3] M.K. Lei, in Plasma Surface Engineering Research and its Practical Applications (edited by R. Wei), Chapter 11, Research Signpost, (2008).

Google Scholar

[4] H.J. Grabke, The Role of Nitrogen in the Corrosion of Iron and Steels, ISIJ Int. 36 (1996) 777-786.

DOI: 10.2355/isijinternational.36.777

Google Scholar

[5] R.F.A. Jargelius-Pettersson, Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels, Corros. Sci. 41 (1999) 1639-1664.

DOI: 10.1016/s0010-938x(99)00013-x

Google Scholar

[6] H. Baba, T. Kodama, Y. Katada, Role of nitrogen on the corrosion behavior of austenitic stainless steels, Corros. Sci. 44 (2002) 2393–2407.

DOI: 10.1016/s0010-938x(02)00040-9

Google Scholar

[7] M.K. Lei, X.M. Zhu, Role of Nitrogen in Pitting Corrosion Resistance of a High-Nitrogen Face-Centered-Cubic Phase Formed on Austenitic Stainless Steel, J. Electrochem. Soc. 152 (2005) B291-B295.

DOI: 10.1149/1.1939245

Google Scholar

[8] K. Osozawa, N. Okato, Y. Fukase, Effects of Alloying Elements on the Pitting Corrosion of Stainless Steels, Corros. Eng. (Boshoku-Gijyutsu) 24 (1975) 1.

DOI: 10.3323/jcorr1974.24.1_1

Google Scholar

[9] A.S. Vanini, J.P. Audouard, P. Marcus, The role of nitrogen in the passivity of austenitic stainless steels, Corros. Sci. 36 (1994) 1825-1834.

DOI: 10.1016/0010-938x(94)90021-3

Google Scholar

[10] C.R. Clayton, G.P. Halada, J. R. Kearns, Passivity of high-nitrogen stainless alloys: the role of metal oxyanions and salt films, Mater. Sci. Eng. A 198 (1995) 135-144.

DOI: 10.1016/0921-5093(95)80068-6

Google Scholar

[11] I. Olefjord, L. Wegrelius, The influence of nitrogen on the passivation of stainless steels, Corros. Sci. 38 (1996) 1203-1220.

DOI: 10.1016/0010-938x(96)00018-2

Google Scholar

[12] L. Wegrelius, F. Falkenberg, I. Olefjord, Passivation of Stainless Steels in Hydrochloric Acid. J. Electrochem. Soc. 146 (1999) 1397-1406.

DOI: 10.1149/1.1391777

Google Scholar

[13] X.C. Tan, J.C. Zhou, First-principles study of oxygen adsorption on Fe (1 1 0) surface, Appl. Surf. Sci. 258 (2012) 8484-8491.

DOI: 10.1016/j.apsusc.2012.04.162

Google Scholar

[14] M. Busch, M. Gruyters, H. Winter, FeO (111) formation by exposure of Fe (110) to atomic and molecular oxygen, Surf. Sci. 600 (2006) 4166-4169.

DOI: 10.1016/j.susc.2006.05.003

Google Scholar

[15] N.K. Das, K. Suzuki, Y. Takeda, K. Ogawa, T. Shoji, Quantum chemical molecular dynamics study of stress corrosion cracking behavior for fcc Fe and Fe–Cr surfaces, Corros. Sci. 50 (2008) 1701-1706.

DOI: 10.1016/j.corsci.2008.01.032

Google Scholar

[16] N.K. Das, K. Suzuki, K. Ogawa, T. Shoji, Early stage SCC initiation analysis of fcc Fe–Cr–Ni ternary alloy at 288 C: a quantum chemical molecular dynamics approach, Corros. Sci. 51 (2009) 908-913.

DOI: 10.1016/j.corsci.2009.01.005

Google Scholar

[17] N.K. Das, T. Shoji, A density functional study of atomic oxygen and water molecule adsorption on Ni (1 1 1) and chromium-substituted Ni (1 1 1) surfaces, Appl. Surf. Sci. 258 (2011) 442-447.

DOI: 10.1016/j.apsusc.2011.08.107

Google Scholar

[18] G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48 (1993) 13115-13118.

DOI: 10.1103/physrevb.48.13115

Google Scholar

[19] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[20] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[21] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[22] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[23] H.J. Monkhorst, D.J. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[24] T.P.C. Klaver, D.J. Hepburn, G.J. Ackland, Defect and solute properties in dilute Fe-Cr-Ni austenitic alloys from first principles, Phys. Rev. B 85 (2012) 174111.

DOI: 10.1103/physrevb.85.174111

Google Scholar

[25] D.J. Hepburn, D. Ferguson, S. Gardner, G.J. Ackland, First-principles study of helium, carbon, and nitrogen in austenite, dilute austenitic iron alloys, and nickel, Phys. Rev. B 88 (2013) 024115.

DOI: 10.1103/physrevb.88.024115

Google Scholar

[26] J.B. Piochaud, T.P.C. Klaver, G. Adjanor, First-principles study of point defects in an fcc Fe-10Ni-20Cr model alloy, Phys. Rev. B 89 (2014) 024101.

DOI: 10.1103/physrevb.89.024101

Google Scholar

[27] M.K. Lei, X.M. Zhu, Chemical state of nitrogen in a high nitrogen face-centered-cubic phase formed on plasma source ion nitrided austenitic stainless steel, J. Vac. Sci. Technol. A 22 (2004) 2067 - (2070).

DOI: 10.1116/1.1786305

Google Scholar

[28] G. Henkelman, A. Arnaldsson, H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 (2006) 354-360.

DOI: 10.1016/j.commatsci.2005.04.010

Google Scholar

[29] W. Tang, E. Sanville, G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter 21 (2009) 084204.

DOI: 10.1088/0953-8984/21/8/084204

Google Scholar