Tribocorrosion Behaviors of D40 Steel in Artificial Seawater

Article Preview

Abstract:

The friction, corrosion and tribocorrosion experiments were carried out to study the tribocorrosion characteristics of the D40 steel. Friction process was undertaken using a TriboLab. The electrochemical property of D40 steel was studied using an electrochemical workstation. The surface morphologies of the D40 steel after experiments were characterized by white light interferometry, scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results indicated that both the tribocorrosion and corrosion process of D40 steel under the condition of seawater were controlled by the cathodic oxygen diffusion. The diffusion rate of oxygen in the solution was accelerated by the friction. The phenomenon of Cl ion adsorption was more obvious for the D40 steel during tribocorrosion test, and the corrosion resistance was significantly reduced due to the promotion of friction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

840-848

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Rohm, M. Hasler, C. Knoflach, P.J. van, S.H. Unterberger, K. Schindelwig, R. Lackner, W. Nachbauer, Friction Between Steel and Snow in Dependence of the Steel Roughness, Tribol. Lett. 59 (2015) 27-34.

DOI: 10.1007/s11249-015-0554-x

Google Scholar

[2] R.E. Gagnon, J. Wang, Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel, Cold. Sci. Technol. 81 (2012) 26-35.

DOI: 10.1016/j.coldregions.2012.04.006

Google Scholar

[3] H. Liang, J.M. Martin, T.L. Mogne, Experimental investigation of friction on low-temperature ice, Acta. Mater. 51 (2003) 2639-2646.

DOI: 10.1016/s1359-6454(03)00061-2

Google Scholar

[4] J.G. Liu, Z.L. Li, Y.T. Li, B.R. Hou, Corrosion Behavior of D32 Rust Steel in Seawater, Int. J. Electrochem. Sci. 12(2014) 6699-6706.

DOI: 10.1016/s1452-3981(23)10923-0

Google Scholar

[5] H. Su, X.B. Luo, C.F. Yang, F. Chai, H. Li, Effects of Cu on Corrosion Resistance of Low Alloyed Steels in Acid Chloride Media, J. Iron. Steel. Res. Int. 21(2014) 619-624.

DOI: 10.1016/s1006-706x(14)60096-0

Google Scholar

[6] F. Kuang, J. Wang, L. Yan, D. Zhang, Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel, Electrochim. Acta. 52 (2007) 6084-6088.

DOI: 10.1016/j.electacta.2007.03.041

Google Scholar

[7] G. Quercia, I. Grigorescu, H. Contreras, R.C. Di, D. Gutierrez-Campos, Friction and wear behavior of several hard materials, Int. J. Refract. Met. H. 19 (2001) 359-369.

DOI: 10.1016/s0263-4368(01)00028-2

Google Scholar

[8] R. Tyagi, S.K. Nath, S. Ray, Dry sliding friction and wear in plain carbon dual phase steel in plain carbon dual phase steel, Metall. Matel. Transact. A. 32 (2001): 359-367.

DOI: 10.1007/s11661-001-0267-7

Google Scholar

[9] N. Liu, J. Wang, B. Chen, F. Yan, Tribochemical aspects of silicon nitride ceramic sliding against stainless steel under the lubrication of seawater, Tribol. Int. 61 (2013) 205-213.

DOI: 10.1016/j.triboint.2013.01.011

Google Scholar

[10] C. Gheorghies, L. Palaghian, S. Baicean, M. Buciumeanu, S. Ciortan, Fatigue behaviour of naval steel under seawater environmental and variable loading conditions, J. Iron. Steel. Res. Int. 18 (2011) 64-69.

DOI: 10.1016/s1006-706x(11)60067-8

Google Scholar

[11] C.F. Chen, M.X. Lu, G.X. Zhao, Z.Q. Bai, M.L. Yan, Y.Q. Yang, The EIS analysis of electrode reactions of CO2 corrosion of N80 steel, Acta. Metall. Sin. 38 (2002) 770-774.

Google Scholar

[12] C.F. Chen, M.X. Lu, D.B. Sun, Z.H. Zhang, W. Chang, Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system, Corros. 61 (2005) 594-601.

DOI: 10.5006/1.3278195

Google Scholar

[13] J.M. Hu, J.Q. Zhang, C.N. Cao, Determination of water uptake and diffusion of Cl- ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy, Prog. Org. Coat. 46 (2003) 273-279.

DOI: 10.1016/s0300-9440(03)00010-9

Google Scholar

[14] G. Salvago, L. Magagnin, Biofilm effect on the cathodic and anodic processes on stainless steel in seawater near the corrosion potential - Part 2: Oxygen reduction on passive metal. Corrosion. 57(2001) 759-767.

DOI: 10.5006/1.3280610

Google Scholar

[15] J.Y. Hu, S.A. Cao, J.L. Xie, EIS study on the corrosion behavior of rusted carbon steel in 3% NaCl solution, Anti-corros. Method. M. 60 (2013) 100-105.

DOI: 10.1108/00035591311308074

Google Scholar

[16] A. Lopez, R. Bayon, F. Pagano, A. Igartua; A. Arredondo, J. L. Arana, J.J. Gonzalez, Tribocorrosion behaviour of mooring high strength low alloy steels in synthetic seawater, Wear. 338 (2015) 1-10.

DOI: 10.1016/j.wear.2015.05.004

Google Scholar

[17] R.P. C. Costa, F.R. Marciano, D.A. Lima-Oliveira, E.J. Corat, V.J. Trava-Airoldi, Tribological effect of iron oxide residual on the DLC film surface under seawater and saline solutions, Sur. Sci. 605 (2011) 783-787.

DOI: 10.1016/j.susc.2011.01.018

Google Scholar

[18] J. Chen, F.Y. Yan, B.B. Chen, J.Z. Wang, Assessing the tribocorrosion performance of Ti6Al4V, 316 stainless steel and Monel K500 alloys in artificial seawater, Mater. Corros. 64 (2013) 394-401.

DOI: 10.1002/maco.201106249

Google Scholar

[19] E.C. Souza, S.M. Rossitti, J. Rollo, Influence of chloride ion concentration and temperature on the electrochemical properties of passive films formed on a superduplex stainless steel. Mater. Charact. 61 (2010) 240-244.

DOI: 10.1016/j.matchar.2009.12.004

Google Scholar

[20] S.S. Xin, M.C. Li, Pitting resistance of anodic passive films formed on 316L stainless steel in the concentrated artificial seawater, Russ. J. Electrochem. 50 (2014) 281-288.

DOI: 10.1134/s1023193513090097

Google Scholar