Effect of Thermal Aging on Microstructural Evolution in Ferrite of Duplex Stainless Steel in Nuclear Power Plant Applications

Article Preview

Abstract:

Z3CN20-09M duplex steels are thermally aged at 400oC for up to 20,000 h. The mechanical properties have been characterized by Charpy V-notch impact test and nanoindentation test. It is found that the nanohardness in ferrite increases and the impact toughness decreases with aging time. Moreover, the distribution of alloying elements has been carefully characterized using atom probe tomography (APT). The results indicate that the ferrite decomposes into Cr-rich α' and Cr-lean α phase during the thermal aging and Ni-rich G-phase forms in ferrite. The effect of aging time on solute nanostructure has been investigated systematically.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

818-825

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.M. Chung, Aging and life prediction of cast duplex stainless steel components, International Journal of Pressure Vessels and Piping aging and life prediction of cast duplex stainless steel components International 50 (1992) 179–213.

DOI: 10.1016/0308-0161(92)90037-g

Google Scholar

[2] T. Yamada, S. Okano, H. Kuwano, Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel, Journal of Nuclear Materials 350 (2006) 47–55.

DOI: 10.1016/j.jnucmat.2005.11.008

Google Scholar

[3] K. Chandra, R. Singhal, V. Kain, V.S. Raja, Low temperature embrittlement of duplex stainless steel: Correlation between mechanical and electrochemical behaviour, Materials Science and Engineering: A 527 (2010) 3904–3912.

DOI: 10.1016/j.msea.2010.02.069

Google Scholar

[4] F. Iacoviello, F. Casari, S. Gialanella, Effect of 475ºC embrittlement, on duplex steels localized corrosion resistance, Corrosion Science 47 (2005) 909–922.

DOI: 10.1016/j.corsci.2004.06.012

Google Scholar

[5] C. Park, H. Kwon, M.M. Lohrengel, Micro-electrochemical polarization study on 25% Cr duplex stainless steel, Materials Science and Engineering: A 372 (2004) 180–185.

DOI: 10.1016/j.msea.2003.12.013

Google Scholar

[6] V. Calonne, A.F. Gourgues, A. Pineau, Fatigue crack propagation in cast duplex stainless steels: thermal aging and microstructural effects, Fatigue and Fracture of Engineering Materials and Structures 27 (2004) 31–43.

DOI: 10.1111/j.1460-2695.2004.00717.x

Google Scholar

[7] J.B. Vogt, K. Massol, J. Foct, Role of the microstructure on fatigue properties of 475ºC aged duplex stainless steels, International Journal of Fatigue, 24 (2002) 627–633.

DOI: 10.1016/s0142-1123(01)00187-6

Google Scholar

[8] R.N. Gunn, Duplex Stainless Steels, Microstructure, Properties and Applications, Woodhead Publishing, Cambridge, (1997).

Google Scholar

[9] S. Kawaguchi, N. Sakamoto, G. Takano, F. Matsuda, Y. Kikuchi, L. Mráz, Microstructural changes and fracture behaviour of CF8M duplex stainless steels after long-term aging, Nuclear Engineering and Design 174 (1997) 273–285.

DOI: 10.1016/s0029-5493(97)00126-x

Google Scholar

[10] F. Danoix, P. Auger, Atom Probe Studies of the Fe-Cr and Stainless Steels Aged at Intermediate Temperature: A Review, Materials Characterization 44 (2000) 177–201.

DOI: 10.1016/s1044-5803(99)00048-0

Google Scholar

[11] M. Miller, J. Bentley, APFIM and AEM investigation of CF8 and CF8M primary coolant pipe steels, Materials Science and Technology 6 (1990) 285–292.

DOI: 10.1179/mst.1990.6.3.285

Google Scholar

[12] C. Pareige, S. Novy, S. Saillet, P. Pareige, Study of phase transformation and mechanical properties evolution of duplex stainless steels after long term thermal ageing (>20 years), Journal of Nuclear Materials 411 (2011) 90–96.

DOI: 10.1016/j.jnucmat.2011.01.036

Google Scholar

[13] J.D. Tucker, M.K. Miller and G.A. Young, Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications, Acta Materialia 87 (2015) 15–24.

DOI: 10.1016/j.actamat.2014.12.012

Google Scholar

[14] G.T. Brown, R.T. Allsop, Embrittlement of a 12% Cr-4Ni steel, J. Iron Steel Inst. 194 (1960) 435–442.

Google Scholar

[15] P. Auger, F. Danoix, Atom probe and transmission electron microscopy study of aging of cast duplex stainless steels. Materials Science and Technology 6 (1990) 300–313.

DOI: 10.1179/mst.1990.6.3.301

Google Scholar

[16] C. Pareige, J. Emo, S. Saillet, C. Domain, P. Pareige. Kinetics of G-phase precipitation and spinodal decomposition in very long aged ferrite of a Mo-free duplex stainless steel. Journal of Nuclear Materials 465 (2015) 383-389.

DOI: 10.1016/j.jnucmat.2015.06.017

Google Scholar

[17] T. Hamaoka, A. Nomoto, K. Nishida, K. Dohi and N. Soneda. Accurate determination of the number density of G-phase precipitates in thermally aged duplex stainless steel. Philosophical Magazine 92. 22 (2012) 2716-2732.

DOI: 10.1080/14786435.2012.674222

Google Scholar

[18] T. Hamaoka, A. Nomoto, K. Nishida, K. Dohi and N. Soneda. Effects of aging temperature on G-phase precipitation and ferrite-phase decomposition in duplex stainless steel. Philosophical Magazine 92. 34 (2012) 4354-4375.

DOI: 10.1080/14786435.2012.707340

Google Scholar

[19] Anon, ISO Designation 14556: 2000: Steel-Charpy V-notch pendulum impact test – Instrumented test method, Publication of ISO, (2000).

DOI: 10.3403/02052562

Google Scholar

[20] S.L. Li, Y.L. Wang, X.T. Wang, Fei Xue. G-phase precipitation in duplex stainless steels after long-term thermal aging: A high-resolution transmission electron microscopy study. Journal of Nuclear Materials 452 (2014) 382–388.

DOI: 10.1016/j.jnucmat.2014.05.069

Google Scholar

[21] H.D. Solomon, L.M. Levinson. Mössbauer effect study of 475ºC embrittlement, of duplex and ferritic stainless steels. Acta Metallurgica 26 (1978) 429-442.

DOI: 10.1016/0001-6160(78)90169-4

Google Scholar

[22] H.M. Chung, T.R. Leax. Embrittlement of laboratory and reactor aged CF3, CF8, and CF8M duplex stainless steels. Materials Science and Technology 6 (1990) 249-262.

DOI: 10.1179/mst.1990.6.3.249

Google Scholar