[1]
TANG Di, MI Zhen-li, CHEN Yu-lai. Technology and Research and Development of Advanced Automobile Steel Abroad [J]. Iron and Steel, 2005, 40(6): 1-5.
Google Scholar
[2]
ZHANG Leifeng, SONG Renbo, ZHAO Chao, YANG Fuqiang, QIN Shuai, XU Yang. Research Progress of New Automotive Steel--Low-density High Strength - Toughness Steel [J]. Materials Review, 2014, 28(19): 111-118.
Google Scholar
[3]
Suh D W, Park S J, Lee T H, et al. Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel[J]. Corrosion Science, 2010, 52(5): 1721-1727.
DOI: 10.1007/s11661-009-0124-7
Google Scholar
[4]
Lee C Y, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite[J]. Acta Materialia, 2015, 84: 1-8.
DOI: 10.1016/j.actamat.2014.10.032
Google Scholar
[5]
Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum[J]. Scripta Materialia, 2013, 68(6): 365-369.
DOI: 10.1016/j.scriptamat.2012.09.030
Google Scholar
[6]
I Cai Z, Ding H, Ying Z, et al. Microstructural Evolution and Deformation Behavior of a Hot-Rolled and Heat Treated Fe-8Mn-4Al-0. 2C Steel[J]. Journal of Materials Engineering & Performance, 2014, 23(4): 1131-1137.
DOI: 10.1007/s11665-014-0866-2
Google Scholar
[7]
Li Y P, Song R B, Wen E D, et al. Hot Deformation and Dynamic Recrystallization Behavior of Austenite-Based Low-Density Fe–Mn–Al–C Steel[J]. Acta Metallurgica Sinica, 2016, 29(5): 1-9.
DOI: 10.1007/s40195-016-0406-1
Google Scholar
[8]
Gottstein G, Frommert M, Goerdeler M, et al. Prediction of the critical conditions for dynamic recrystallization in the austenitic steel 800H[J]. Materials Science & Engineering A, 2004, s 387–389(1): 604-608.
DOI: 10.1016/j.msea.2004.02.098
Google Scholar
[9]
Cai D, Xiong L, Liu W, et al. Development of processing maps for a Ni-based superalloy[J]. Materials Characterization, 2007, 58(10): 941-946.
DOI: 10.1016/j.matchar.2006.09.004
Google Scholar
[10]
Xiao X, Liu G Q, Hu B F, et al. A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel[J]. Computational Materials Science, 2012, 62(11): 227-234.
DOI: 10.1016/j.commatsci.2012.05.053
Google Scholar
[11]
Meysami M, Mousavi S A A A. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test[J]. Materials Science & Engineering A, 2011, 528(7): 3049-3055.
DOI: 10.1016/j.msea.2010.11.093
Google Scholar
[12]
Wei H L, Liu G Q, Zhao H T, et al. Hot deformation behavior of two C–Mn–Si based and C–Mn–Al based microalloyed high-strength steels: A comparative study[J]. Materials & Design, 2013, 50(17): 484-490.
DOI: 10.1016/j.matdes.2013.03.043
Google Scholar
[13]
Momeni A, Dehghani K. Hot working behavior of 2205 austenite–ferrite duplex stainless steel characterized by constitutive equations and processing maps[J]. Materials Science & Engineering A, 2011, 528(3): 1448-1454.
DOI: 10.1016/j.msea.2010.11.020
Google Scholar