Effect of Precipitates on Austenite Grain Growth Behavior in a Low-Carbon Nb-V Microalloyed Steel

Article Preview

Abstract:

The effect of precipitates on austenite grain growth behavior in a Nb-V microalloyed steel was investigated. The precipitates were identified by selected area electron diffraction (SAED) and energy dispersive spectrometer (EDS) analysis. Because of pinning effect of NbC and/or VC on austenite grain boundaries, grains grew slowly at 850oC-1000oC. However, when temperature reached 1050 oC, abnormal grain growth was observed, which was attributed to dissolution of NbC particles. The NbC precipitates dissolved significantly at 1150 oC. However, grain sizes were still very small. Thus, austenite grains grew rapidly at 1050-1150 oC. The fully dissolution temperature of this steel was 1150-1250oC. Finally, the relationship between grain coarsening temperature (TGC) and fully dissolution temperature (TDISS) could be illustrated as follows: 100 oC≤TDISS -TGC≤200 oC. When heating temperatures were 850-1050 oC and 1050-1250 oC, grain growth activation energies (Q) were 59945 J/mol and 135813 J/mol, respectively. The different grain growth models were mainly caused by the gradual dissolution of NbC particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

783-790

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. S. Qian, Y. Y. Peng, Mathematical Modeling for Microstructural Evolution in Multi-pass Hot Compression of Q345E Alloy Steel, J. Mater. Eng. Perform. 24 (2015) 1906-(1917).

DOI: 10.1007/s11665-015-1473-6

Google Scholar

[2] J. W. Zhao, Z. Y. Jiang, C. S. Lee, Enhancing impact fracture toughness and tensile properties of a microalloyed cast steel by hot forging and post-forging heat treatment processes, Mater. Des. 47 (2013) 227-233.

DOI: 10.1016/j.matdes.2012.11.051

Google Scholar

[3] J. W. Zhao, J. H. Lee, Y. W. Kim, Z.Y. Jiang, C. S. Lee, Enhancing mechanical properties of a low-carbon microalloyed cast steel by controlled heat treatment, Mater. Sci. Eng. A 559 (2013) 427-435.

DOI: 10.1016/j.msea.2012.08.122

Google Scholar

[4] X. Liu, F. Zhao, Z. Q. Dong, C. L. Zhang, Y. S. Kou, Y. Z. Liu, Effect of Niobium Additions on Austenite Grain Coarsening Behavior of GCr15 Bearing Steel, Mater. Sci. Forum 817 (2015) 121-126.

DOI: 10.4028/www.scientific.net/msf.817.121

Google Scholar

[5] Q.Y. Yu, Y. Sun, Abnormal growth of austenite grain of low-carbon steel, Mater. Sci. Eng. A 420 (2006) 34-38.

Google Scholar

[6] S. K. Mishra, S. Das, S. Ranganathan, Precipitation in high strength low alloy (HSLA) steel: a TEM study, Mater. Sci. Eng. A 323 (2002) 285-292.

DOI: 10.1016/s0921-5093(01)01382-x

Google Scholar

[7] R. Staśko, H. Adrian, A. Adrian, Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel, Mater. Charact. 56 (2006) 340-347.

DOI: 10.1016/j.matchar.2005.09.012

Google Scholar

[8] L. N. Duan, J. M. Wang, Q. Y. Liu, X. J. Sun, J. C. Cao, Austenite grain growth behavior of X80 pipeline steel in heating process, J. Iron Steel Res. Int. 17 (2010) 62-66.

DOI: 10.1016/s1006-706x(10)60074-x

Google Scholar

[9] S. Maropoulos, S. Karagiannis, N. Ridley, The effect of austenitising temperature on prior austenite grain size in a low-alloy steel, Mater. Sci. Eng. A 483 (2008) 735-739.

DOI: 10.1016/j.msea.2006.11.172

Google Scholar

[10] Q. Y. Sha, Z. Q. Sun, Prediction of grain growth of coarse-grained austenite in Nb-V-Ti microalloyed steel, Mater Sci and Technol. 27 (2011) 1408-1411.

DOI: 10.1179/026708310x12701149768214

Google Scholar

[11] M. Chapa, S. F. Medina, V. López, B. Fernández1, Influence of Al and Nb on Optimum Ti/N Ratio in Controlling Austenite Grain Growth at Reheating Temperatures, ISIJ int. 42 (2002) 1288-1296.

DOI: 10.2355/isijinternational.42.1288

Google Scholar

[12] P. A. Manohar, M. Ferry, T. Chandra, Five Decades of the Zener Equation, ISIJ int. 38 (1998) 913-924.

DOI: 10.2355/isijinternational.38.913

Google Scholar

[13] J. Rudnizki, B. Zeislmair, U. Prahl, W. Bleck, Prediction of abnormal grain growth during high temperature treatment, Comput. Mater. Sci. 49 (2010) 209-216.

DOI: 10.1016/j.commatsci.2010.04.015

Google Scholar

[14] J. S. Park, Y. K. Lee, Determination of Nb(C, N) dissolution temperature by electrical resistivity measurement in a low-carbon microalloyed steel, Scr. Mater. 56 (2007) 225-228.

DOI: 10.1016/j.scriptamat.2006.10.007

Google Scholar

[15] J. S. Park, Y. S. Ha, S. J. Lee, Y. K. Lee, Dissolution and precipitation kinetics of Nb (C, N) in austenite of a low-carbon Nb-microalloyed steel, Metall. Mater. Trans. A 40 (2009) 560-568.

DOI: 10.1007/s11661-008-9758-0

Google Scholar

[16] E. J. Palmiere, C. I. Garcia, A. J. Deardo, Compositional and Microstructural Changes Which Attend Reheating and Grain Coarsening in Steels Containing Niobium, Metall. Mater. Trans. A 25 (1994) 277-286.

DOI: 10.1007/bf02647973

Google Scholar

[17] S. S. Zhang, M. Q. Li, Y. G. Liu, J. Luo, T. Q. Liu, The growth behavior of austenite grain in the heating process of 300M steel, Mater. Sci. Eng. A 528 (2011) 4967-4972.

DOI: 10.1016/j.msea.2011.02.089

Google Scholar

[18] S. J. Lee, Y. K. Lee, Prediction of austenite grain growth during austenitization of low alloy steels, Mater. Des. 29 (2008) 1840-1844.

DOI: 10.1016/j.matdes.2008.03.009

Google Scholar

[19] S. S. Li, Y. H. Liu, Y. L. Song, L. N. Kong, T. J. Li, R. H. Zhang, Austenitic Grain Growth Behavior during Austenization in an Aluminum-Alloyed 5% Cr-Mo-V Steel, Steel Res. Int. 87 (2016) 1.

DOI: 10.1002/srin.201500427

Google Scholar

[20] H. Hu, B. B. Rath, On the time exponent in isothermal grain growth, Metall. Trans. 1(1970) 3181-3184.

DOI: 10.1007/bf03038435

Google Scholar

[21] J. E. Burke, Some factors affecting the rate of grain growth in metals, Trans. AIME. 180 (1949) 73-91.

Google Scholar

[22] C. S. Smith, Grains, phases, and interphases: an interpretation of microstructure, Trans. Metall. Soc. AIME. 175 (1948) 15-51.

Google Scholar