Isoconversional Kinetic Analysis of Pyrolysis of Malt Waste

Article Preview

Abstract:

Locally available malt waste or brewers' spent grain, a by-product of brewing industry, was found to be a low cost and promising biomass for pyrolysis. A kinetic studied of pyrolysis of malt waste was investigated by non-isothermal thermogravimetric analyses (TG-DTG), applying slow heating rates, 10, 15, 30 and 50 K/min, and well-defined conditions. Activation energies and Arrhenius exponential factors were inferred by different estimation methods: Kissinger, Ozawa, Starink, K-A-S and. The methods presented energy activation values of 214 - 238.23 kJ/mol. The Literature studies found activations energies values similar to those found for sugarcane bagasse pyrolysis and other types of biomasses with predominance of hemicelluloses, cellulose and lignin, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Mohan, C.U. Pittman Jr and P.H. Steele: A Critical Review Energy Fuels Vol. 20 (2006), p.848.

Google Scholar

[2] P. McKendry: Bioresour. Technol. Bioresource Technol. Vol. 83 (2002), p.37.

Google Scholar

[3] C. Di Blasi: Prog. Energy Combust. Sci. Vol. 34 (2008), p.47.

Google Scholar

[5] J.J. Manyà and J. Arauzo: Chem. Eng. J. Vol. 139 (2008), p.549.

Google Scholar

[6] K.G. Santos, V.V. Murata and M.A.S. Barrozo: Canadian Journal of Chemical Engineering Vol. 87 (2009), p.211.

Google Scholar

[7] K.G. Santos, R.A. Malagoni, T.S. Lira, V.V. Murata and M.A. S Barrozo: Materials Science Forum Vols. 727-728 (2012), p.1830.

DOI: 10.4028/www.scientific.net/msf.727-728.1830

Google Scholar

[8] C.R. Cardoso, M.R. Miranda, K.G. Santos, C.H. Ataíde: Journal of Analytical and Applied Pyrolysis Vol. 92 (2011), p.392.

Google Scholar

[9] G. Várhegyi, Z. Czégény, E. Jakab, K. Mcadam, C. Liu: J. Anal. Appl. Pyrol. Vol. 86 (2009), p.310.

Google Scholar

[11] S Vyazovkin and C.A. Wight: Thermochim. Acta Vol. 340 (1999), p.53.

Google Scholar

[12] E. Biagini, F. Lippi, L. Petarca and L. Tognotti: Fuel Vol. 81 (2002), p.1041.

Google Scholar

[11] H.E. Kissenger: J. Res. Natl. Bur. Stand. Vol. 57 (1956), p.217.

Google Scholar

[12] P. Stolarek, S. Ledakowicz: Thermochim. Acta Vol. 433 (2005), p.200.

Google Scholar

[13] M. J. Starink: Thermochim. Acta Vol. 288 (1996), p.97.

Google Scholar

[14] T. Akahira, T. Sunose: Rep. Chiba Inst Technol Vol. 16 (1971), p.22.

Google Scholar

[15] H.L. Friedman: J Polym Sci Part C Polym Symp Vol. 6 (1964), p.183.

Google Scholar

[16] M.J. Antal, G. Várhegyi, E. Jakab: Ind. Eng. Chem. Res. Vol. 37 (1998), p.1267.

Google Scholar

[17] R.M.B. Moreno, E.S. Medeiros, F.C. Ferreira, N. Alves, P. S Gonçalves, L.H.C. Mattoso: Plast. Rubber Compos. Vol. 35 (2006), p.15.

Google Scholar

[18] F. Yao, Q. Wu, Y. Lei, W. Guo, Y. Xu: Polym. Degrad. Stab. Vol. 93 (2008), p.90.

Google Scholar

[19] H.E. Kissinger: J. Res. Natl. Bur. Stand. Vol. 57 (1956), p.217.

Google Scholar

[20] T. Ozawa: Bull. Chem. Soc. Jpn. Vol. 38 (1965), p.1881.

Google Scholar

[21] N.A.V. Santos: Pirólise rápida de coprodutos do processo produtivo de biodiesel: Efeito das condições de pirólise e caracterização dos produtos. Mestrado (Dissertação). Lavras, 2013. Universidade Federal de Lavras (MG).

DOI: 10.1590/s1678-86212023000200668

Google Scholar