Study of the Influence of the Underflow Diameter on the Separation Process of an Optimized Hydrocyclone for Concentration Purposes

Article Preview

Abstract:

Hydrocyclones are equipment typically used in solid-liquid separation. Such equipment can be used with the purpose of classifying particles or concentrating suspensions. In this context, a new filtering hydrocyclone was conceived through Surface Response and Differential Evolution Algorithm techniques in order to optimize the Euler’s number. Based on this optimized geometry, the aim of the present paper was to verify the influence of the underflow diameter on the overall separation process at 147 kPa on the same optimized hydrocyclone geometry, but without the filtration effect, by performing laboratory experiments and CFD simulations using the commercial software Fluent®. The results showed that the use of the smallest underflow diameter increased up to 44% (v/v) the concentration of the underflow stream, compared to the suspension initially fed, with an Euler’s number of 862. Despite a small decrease (14%) in the total efficiency and an increase from 12.01 to 16.05 of the reduced cut size diameter, compared to the underflow diameter originally used in the optimization procedure, the benefits of recovering liquid by reducing the underflow diameter outweigh these disadvantages.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-141

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.W. Green, R.H. Perry: Perry's Chemical Engineers' Handbook. (Mc. Graw-Hill8th ed. New York, 2008).

Google Scholar

[2] L. Svarovsky: Solid-Liquid Separation. (Butterworth-Heinermann 4th ed. Oxford, 2000).

Google Scholar

[3] L. Svarovsky: Hydrocyclones. (Volume II New York, 1984).

Google Scholar

[4] L.G.M. Vieira, B.C. Silvério, J.J.R. Damasceno, M.A.S. Barrozo: Canadian Journal of Chemical Engineering Vol. 89 (2011), p.655.

Google Scholar

[5] J.J.R. Damasceno, L.G.M. Vieira, M.A.S. Barrozo, Brazilian Patent PI0701118-0 (2008).

Google Scholar

[6] F.J. Souza, L.G.M. Vieira, J.J.R. Damasceno, M.A.S. Barrozo: Powder Technology Vol. 107 (2000), p.259.

Google Scholar

[7] L.G.M. Vieira, J.J.R. Damasceno, M.A.S. Barrozo: Chemical Engineering and Processing Process Intensification Vol. 49 (2010), p.460.

Google Scholar

[8] L.G.M. Vieira, M.A.S. Barrozo, J. J. R. Damasceno: Materials Science Forum Vol. 416 (2003), p.317.

Google Scholar

[9] L.G.M. Vieira, J.J.R. Damasceno, M.A.S. Barrozo: Materials Science Forum Vols. 591–593 (2008), p.341.

Google Scholar

[10] N.K.G. Silva: Estudo de Otimização da Configuração do Hidrociclone Fitrante. Mestrado (Dissertação). Uberlândia, 2014. Universidade Federal de Uberlandia (MG).

DOI: 10.14393/ufu.di.2014.111

Google Scholar

[11] F.S. Lobato, V. Steffen, E.B. Arruda, M.A.S. Barrozo: J. Phys. Conf. Ser. Vol. 135 (2008), p.1.

Google Scholar

[12] E.B. Arruda, J.M.F. Façanha, L.N. Pires, A.J. Assis, M.A.S. Barrozo: Chem. Eng. Process. Vol. 48 (2009), p.1414.

Google Scholar

[13] M.A. Santos, R.C. Santana, F. Capponi, C.H. Ataide, M.A.S. Barrozo: Sep. Purif. Technol. Vol. 76 (2010), p.15.

Google Scholar

[14] D.O. Silva, L.M. Tamiozzo, C.R. Duarte, V.V. Murata, M.A.S. Barrozo: Drying TechnolVol 29 (2011), p.286.

Google Scholar

[15] K.G. Santos, V.V. Murata, M.A.S. Barrozo: J. Chem. Eng. Vol. 87 (2009), p.211.

Google Scholar

[16] L.G.M. Vieira, M.A.S. Barrozo, J. J. R. Damasceno: Brazilian Journal of Chemical Engineering Vol. 22 (2005), p.143.

Google Scholar

[17] D.C. Oliveira, C.A.K. Almeida, L.G.M. Vieira, J.J.R. Damasceno, M.A.S. Barrozo: Brazilian Journal of Chemical Engineering Vol. 26 (2009), p.575.

Google Scholar

[18] A.N. Pires, D.C. Oliveira, L.G.M. Vieira, J.J.R. Damasceno, M.A.S. Barrozo: Materials Science Forum Vols 660-661 (2010), p.525.

DOI: 10.4028/www.scientific.net/msf.660-661.525

Google Scholar

[19] M.A.S. Barrozo, J. J. R. Damasceno, C.A. Silva Junior, L.G.M. Vieira: Separation and Purification Technology Vol. 28 (2007), p.282.

Google Scholar