Structural and Magnetic Characterization of LaFe1-xAlxO3 (x = 0 and 0.2) Orthoferrites Synthesized by Gelatin Method

Article Preview

Abstract:

The rare-earth orthoferrites (LnFeO3) are promising materials for various applications, such as chemical sensors, cathode for SOFC, catalysts, among others. In general, these oxides are synthesized at temperatures higher than 700 °C. In this work, nanocrystalline LaFe1-xAlxO3 (x=0, x=0.2) powders were synthesized by a method that uses gelatin as organic precursor and heat treated at 400, 600 and 800 °C. The structural and magnetic characterization of powders was carried out by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Morphological analysis was performed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD patterns revealed the formation of orthoferrites single phase since 400°C. The powders exhibited weak ferromagnetic behavior at room temperature where the values of saturation magnetization, remanence and coercivity varied with the doping and heat treatment temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-231

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Wang, X. Yang, L. Lu, X. Wang: Thermochim. Acta Vol. 443 (2006), p.225.

Google Scholar

[2] P.A. Murade, V.S. Sangawar, G.N. Chaudhari, V.D. Kapse, A.U. Bajpeyee: Curr. Appl Phys. Vol. 11 (2011), p.451.

Google Scholar

[3] L. L Liu, A.J. Han, M. Ye, M. Zhao: Sol. Energy Mater. Sol. Cells Vol. 132 (2015), p.377.

Google Scholar

[4] S.M. Khetrea H.V. Jadhav, P.N. Jagadale, S. R. Kulal and S. R. Bamane: Adv. Appl. Sci. Res. Vol. 2 (2011), p.503.

Google Scholar

[5] P. Song, H. Qin, L. Zhang, K. An, Z. Lin, J. Hu, M. Jiang: Actuators B. Chem. Vol. 104 (2005), p.312.

Google Scholar

[6] J. Ding, X. Lü, H. Shu, J. Xie, H. Zhang: Mater. Sci. Eng. B. Vol. 171 (2010), p.31.

Google Scholar

[7] A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I.P. Muthuselvam, F.C. Chou: J. Alloys Compd. Vol. 646 (2015), p.924.

DOI: 10.1016/j.jallcom.2015.05.213

Google Scholar

[8] Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye: J. Alloys Compd. Vol. 583 (2014), p.21.

Google Scholar

[9] R.M.P.B. Oliveira, P.M. Pimentel, J.H. Araújo, D.M.A. Melo, M.A.F. Melo, A.E. Martinelli: Adv. Mater. Sci. Eng. 2013 (2013), p.1.

Google Scholar

[10] P.M. Pimentel, R.M.P.B. Oliveira, J.H. Araújo, F.S. Oliveira, O.R. Bagnato, D.M.A. Melo: J. Chem. Chem. Eng. Vol. 6 (2012), p.526.

Google Scholar

[11] G. Monros, J. Carda, M. A. Tena, P. Escribano, J. Badenes, E. Cordoncillo: J. Mater. Chem. Vol. 5 (1995), p.85.

Google Scholar

[12] H. Xu, X. Hu, L. Zhang: Cryst. Growth Des. Vol. 8 (2008), p. (2061).

Google Scholar

[13] D. Treves: J. Appl. Phys. Vol. 36 (1965), p.1033.

Google Scholar

[14] M.A. Ahmed, N. Okasha, B. Hussein: J. Alloys Compd. Vol. 553 (2013), p.308.

Google Scholar