Antimicrobial Activity of Chlorhexidine against Multi-Species Biofilm Formation

Article Preview

Abstract:

In the present work, the efficacy of the Ti–7.5Mo alloy nanotube and Ti–7.5Mo alloy nanotube with chlorhexidine against bacterial biofilm formation was evaluated. Nanotubes were processed using anodization in 0.25% NH4F electrolyte solution. Biofilms were cultured in discs immersed in sterile brain heart infusion broth (BHI) containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. Next, the discs were placed in tubes with sterile physiological solution 0.9% sodium chloride (NaCl) and sonicated to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then, the numbers CFU/ml (log 10) were counted and analyzed statistically. Scanning electron microscopy (SEM) on discs with biofilms groups and contact angle was carried out. The results show that there is no difference in bacterial adhesion between of the Ti–7.5Mo alloy nanotube and Ti–7.5Mo alloy nanotube with chlorhexidine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-242

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Heuer, C. Elter, A. Demling, A. Neumann, S. Suerbaum, M. Hannig: Journal of Oral Rehabilitation Vol. 34 (2007), p.377.

DOI: 10.1111/j.1365-2842.2007.01725.x

Google Scholar

[2] M.M. Fürst, G.E. Salvi, N.P. Lang, G.R. Persson: Clinical Oral Implants Research Vol. 18 (2007), p.501.

Google Scholar

[3] J. Li, E.J. Helmerhorst, C.W. Leone, R.F. Troxler, T. Yaskell, A.D. Haffajee: Journal of Applied Microbiology Vol. 97 (2004), p.1311.

DOI: 10.1111/j.1365-2672.2004.02420.x

Google Scholar

[4] H.J. Busscher, R.J. Ploeg H.C. Van der Mei: Biomaterials Vol. 30 (2009), p.4247.

Google Scholar

[5] T. Kuyyakanond, L.B. Quesnel: FEMS Microbiol. Lett. Vol. 15 (1992), p.211.

Google Scholar

[6] S. Schou, T. Berglundh, N.P. Lang: Int. J. Oral Maxillofac. Implants Vol. 19 (2004), p.140.

Google Scholar

[7] P.M. Trejo, G. Bonaventura, D. Weng, R. Caffesse, U. Bragger, N.P. Lang: Clin. Oral Implant Res. Vol. 17 (2006), p.294.

DOI: 10.1111/j.1600-0501.2005.01226.x

Google Scholar

[8] A. Kozlovsky, Z. Artzi, O. Moses, N. Kamin-Belsky, R.B. Greenstein: J. Periodontol. Vol. 77 (2006), p.1194.

Google Scholar

[9] M.P.J. Young, M. Korachi, D.H. Carter, H.V. Worthington, J.F. McCord, D.B. Drucker: Clin. Oral Implant Res. Vol. 13 (2002), p.20.

Google Scholar

[10] C.A. Pereira, R.L. Romeiro, A.C. Costa, A.K. Machado, J.C. Junqueira, A.O. Jorge: Lasers Med. Sci. Vol. 26 (2011), p.341.

Google Scholar

[11] A.M. Roos-Jansaker, C. Lindah, H. Renvert, S. Renvert: Journal of Clinical Periodontology Vol. 33 (2006), p.290.

DOI: 10.1111/j.1600-051x.2006.00906.x

Google Scholar

[12] D. Campoccia, L. Montanaro, C. Arciola: Biomaterials Vol. 27 (2006), p.2331.

Google Scholar

[13] A. Pier-Francesco, R.J. Adams, M.G. Waters, D.W. Williams: Clinical Oral Implants Research Vol. 17 (2006), p.633.

Google Scholar

[14] P.S. Stewart, J.W. Costerton: Lancet Vol. 358 (2001), p.135.

Google Scholar

[15] P.C. Bonez, C.F.S. Alves, T.V. Dalmolin, V.A. Agertt, C.R. Mizdal, V.C. Flores, J.B. Marques, R.C.V. Santos, M.M. A Campos: American Journal of Infection Control Vol. 41 (2013), p.119.

DOI: 10.1016/j.ajic.2013.05.002

Google Scholar

[16] H. Lamfon, S.R. Porter, M. McCullough, J. Pratten: J. Antimicrob. Chemother Vol. 53 (2004), p.383.

Google Scholar

[17] K. Totè, T. Horemans, D. Vanden Berghe, L. Maes, P. Cos: Appl Environ Microbiol Vol. 76 (2010), p.3135.

Google Scholar

[18] F.B. Zanatta, C.K. Rosing: Sci. A Vol. 1 (2007), p.35.

Google Scholar