Effect of Nitrogen Flux on the Properties of N-Doped Zn1-xMgxO Thin Films

Article Preview

Abstract:

Different Mg content in Zn1-xMgxO was also obtained by varying N2 flux. UV emission peak in photoluminescence (PL) spectra shift from 350 nm to 360 nm, and then to 352 nm, which is consistent with the result of absorption spectra of the Zn1-xMgxO:N films grown at different N2 flux. The emission intensity of the Zn1-xMgxO:N band edge peak was drastically reduced with increasing N2 flux, which was attributed to the concentration of nonradiative recombination centers increased with increasing N2 flux. The carrier concentration of N-doped Zn1-xMgxO increased with increasing N2 flux below 0.8 sccm, while those above 0.8 sccm decreased. The p-type Zn1-xMgxO:N with the maximum hole concentration 3.97×1017 cm-3 was obtained by optimizing growth conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] David C. Look, J. Electron. Mater. 35 (2006) 6.

Google Scholar

[2] Z. K. Tang, G. K. L. Wong, P. Yu, Appl. Phys. Lett. 72 (1998) 3270.

Google Scholar

[3] C. Y. Yang, D. Y. Wan, Z. Wang, F. Q. Huang, Chin. Opt. Lett. 09 (2011) 103102.

Google Scholar

[4] D. Y. Yong, H. Y. He, Z. K. Tang, S. H. Wei, and B. C. Pan, Phys. Rev. B 92 (2015) 235207.

Google Scholar

[5] H. P. Lu, P. P. Zhou, H. N. Liu, L. N. Zhang, Y. Yu, Y. L. Li, Z Wang, Mater. Lett. 165 (2016)123.

Google Scholar

[6] T. K. Pathak, V. Kumar, H. C. Swart, L. P. Purohit, J. Mod. Opt. 62 (2015) 1368.

Google Scholar

[7] E. Lee, J Park, M. Yim, S. Jeong, G. Yoon, Appl. Phys. Lett. 104 (2014) 213908.

Google Scholar

[8] L. C. Zhu, C. Ton-That, M. R. Phillips, Mater. Lett. 99 (2013) 42.

Google Scholar

[9] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 72 (1998) 2466.

DOI: 10.1063/1.121384

Google Scholar

[10] J. F. Chien, H. Y. Shih, H. Y. Liao, J. Solid State Sci. Technol. 2 (2013) R249.

Google Scholar

[11] Z. P. Wei,B. Yao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. H. Li, X. H. Wang, J. Y. Zhang, D. X. Zhao, X. W. Fan, Z. K. Tang, Appl. Phys. Lett. 89 (2006) 102104.

Google Scholar

[12] X. Gao, S. Xing, J. L. Tang, Nanosci Nanotechnol Lett. 7 (2015) 817.

Google Scholar

[13] P. Wang, N. F. Chen, Z. G. Yin, R. X. Dai, Y. M. Bai, Appl. Phys. Lett. 89 (2006) 202102.

Google Scholar

[14] T. H. Yang, K. C. Chiu, J. M. Wu, Electrochem. Solid-State Lett. 15 (2012) H153.

Google Scholar

[15] Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, Z. K. Tang, Appl. Phys. Lett. 90 (2007) 042113.

Google Scholar

[16] X. C. Xia, R. S. Shen, Y. D. Liu, Opt. Mater. Express 2 (2012) 38.

Google Scholar

[17] C. X. Cong, B. Yao, Q. J. Zhou, J. R. Chen, J. Phys. D: Appl. Phys. 41 (2008) 105303.

Google Scholar

[18] B. X. Lin, Z. X. Fu, Y. B. Jia, Appl. Phys. Lett. 79 (2001) 943.

Google Scholar

[19] Y. F. Li, B. Yao, Y. M. Lu, Y. Q. Gai, C. J. Zheng, Z. Z. Zhang, B. H. Li, D. Z. Shen, X. W. Fan, Z. K. Tang, Appl. Phys. Lett. 91 (2007) 232115.

Google Scholar

[20] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voiget, Appl. Phys. Lett. 68 (1996) 403.

Google Scholar

[21] Y. J. Li, Y. W. Heo. Y. Kwon, K. Ip, S. J. Pearton, D. P. Norton, Appl. Phys. Lett. 87 (2005) 072101.

Google Scholar

[22] C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher, and T. J. Coutts, J. Appl. Phys. 97 (2005) 034907.

Google Scholar