Gold Nanoparticles Resistance Induced by Femtosecond Pulse Laser

Article Preview

Abstract:

We presented a new method to fabricate gold nanoparticles resistance using the deposition technique of Laser Induced Backward Transfer (LIBT). The femtosecond laser was focused on the surface of the gold film covered by a receiving substrate. The ablation was carried out by scanning the laser beam and the expanded plasma can be transferred to the receiving substrate, which forms nanoscale resistance composed of gold nanoparticles lines. Gold nanoparticles were characterized by optical microscope, scanning electron microscope (SEM) and atomic force microscope (AFM). Femtosecond laser fluence, scanning speed, and the space between the scanned lines can influence gold nanoresistance. The resistance of gold nanoparticles with different parameters varied from ~ 8 GΩ to ~ 40 GΩ, which was measured by the picoammeter. Linetype resistance with nanostructured particles can be widely used in the field of microelectronics and optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-92

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. M. Schaadt, B. Feng and E. T. Yub: Appl. Phys. Lett. Vol. 86 (2005), p.063106.

Google Scholar

[2] A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich and Chunlei Guo: Appl. Phys. Lett. Vol. 95 (2009), p.121106.

Google Scholar

[3] A. Y. Vorobyev and Chunlei Guo: Opt. Express Vol. 18 (2010), pp.6455-6460.

Google Scholar

[4] A. Y. Vorobyev and Chunlei Guo: Appl. Phys. Lett. Vol. 94 (2009), p.224102.

Google Scholar

[5] C. W. Extrand, Sung In Moon, P. Hall and D. Schmidt: Langmuir Vol. 23 (2007), pp.8882-8890.

Google Scholar

[6] N. A. Malvadkar, M. J. Hancock, K. Sekeroglu, W. J. Dressick and M. C. Demirel: Nature Mater. Vol. 9 (2010), pp.1023-1028.

DOI: 10.1038/nmat2864

Google Scholar

[7] A. M. Kietzig, S. G. Hatzikiriakos and P. Englezos: Langmuir Vol. 25 (2009), pp.4821-4827.

DOI: 10.1021/la8037582

Google Scholar

[8] A. I. Kuznetsov, J. Koch and B. N. Chichkov: Opt. Express Vol. 17 (2009), pp.18820-18825.

Google Scholar

[9] L. Yang, C. Y. Wang, X. C. Ni, Z. J. Wang, W. Jia and L. Chai: Appl. Phys. Lett. Vol. 89 (2006), p.161110.

Google Scholar

[10] D. A. Willis and V. Grosu: Appl. Phys. Lett. Vol. 86 (2005), p.244103.

Google Scholar

[11] Chengyun Zhang, JianwuYao, ShengLan, VyacheslavA. Trofimovc and TatianaM. Lysak: Opt. Commun. Vol. 308 (2013), pp.54-63.

Google Scholar

[12] F. Yang, K. C. Donavan, S. C. kung and R. M. Penner: Nano Lett. Vol. 12 (2012), pp.2924-2930.

Google Scholar

[13] X. Q. Zeng, M. L. Latimer, Z. L. Xiao, S. Panuganti, U. Welp, W. K. Kwok and T. Xu: Nano Lett. Vol. 11 (2011), pp.262-268.

DOI: 10.1021/nl103682s

Google Scholar

[14] F. Yang, D. K. Taggart and R. M. Penner: Nano Lett. Vol. 9 (2009), pp.2177-2182.

Google Scholar