Machinability Analysis in Drilling Glass/Epoxy Composites with Filled MWCNTS

Article Preview

Abstract:

Drilling is the most used machining process in the assemble of Glass/epoxy composites. Material removing leads to damage and delamination in the drilling process. The present paper deals the effect of drill wt.% of multi walled carbon nanotubes (MWCNTs) on the drilling of glass/epoxy composites in term of torque and push-out delamination. Glass/epoxy composites manufactured by using pre-preg method. The filled rates were considered as 0.5, 1 and 2 wt.%. MWCNTs. Also, the unfilled composite samples were used for comparison. Various cutting speeds (40, 50 and 60 m/min) and feed rates (0.075, 0.1 and 0,125 mm/rev) for coated drills were used. The experimental result showed that the machinability properties of glass/epoxy composites samples can be improved with filling MWCNTs. Higher cutting speed and feed rate increase delamination. Push-out more severe than that of peel-up delamination.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-115

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kim, Y.B. Park, O.I. Okoli and C. Zhang: Composite Science Technology Vol. 69 (2009), pp.335-342.

Google Scholar

[2] L. Torre, J.M. Kenny, A.M. Maffezzoli: Mater Sci Vol. 33 (1998) p.3137–3143.

Google Scholar

[3] A. R. Bahramian, M. Kokabi: Hazard Mater Vol. 166(1) (2009), p.445–454.

Google Scholar

[4] S. Sing, P.K. Guchhait, G.G. Bandyopadhyay, T.K. Chaki: Compos A Vol. 8 (2013), p.15–44.

Google Scholar

[5] J. M. Park, D. J. Kwon, Z. J. Wang, J. U. Roh, W. Lee, J. K. Park, et al.: Compos B Vol. 22 (2014), p.29–67.

Google Scholar

[6] R. B. Mathur, S, Chatterjee, B. P. Singh: Compos Sci Technol Vol. 68 (2008), p.1608–1615.

Google Scholar

[7] Z. Shi, Y. Lian, F.H. Liao, X. Zhou, Z. Gu, Y. Zhang, et al.: J Phys Chem Solids Vol. 61 (2000), p.1031–1036.

Google Scholar

[8] Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, et al.: Carbon Vol. 37 (1999), p.1449–1453.

Google Scholar

[9] W. K. Maser, E. Munoz, A. M. Benito, M. T. Martinez, G.F. de la Fuente, Y. Maniette, et al.: Chem Phys Lett Vol. 292 (1998), p.587–593.

Google Scholar

[10] J. P. Salvetat-Delmotte, A. Rubio: Carbon, Vol. 40 (2002), p.1729–1734.

Google Scholar

[11] O. Jacobs, W. Xu, B. Schädel, W. Wu: Tribol Lett Vol. 23 (2006), p.65–75.

Google Scholar

[12] H. Cai, F. Yan, Q. Xue: Mater Sci Eng, A Vol. 364(1–2) (2004), p.94–100.

Google Scholar

[13] J. Chen, I.M. Hutchings, T. Deng, M.S.A. Bradley, K.K.K. Koziol: Carbon Vol. 73 (2014), p.421–431.

Google Scholar

[14] K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, et al.: Science 318: (2007), p.1892–1895.

DOI: 10.1126/science.1147635

Google Scholar

[15] J. Cui, Y. Yan, J. Liu: Polymer Vol. 40 (2008), p.1067–1073.

Google Scholar

[16] P. C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim: Compos A Vol. 41 (2010), p.1345–1367.

Google Scholar

[17] Y. Liu, W. Tang, A. Cong: Compos. Struct. Vol. 94 (2012), p.1265–1279.

Google Scholar

[18] H. Hocheng, C. Tsao: J. Mater. Process. Technol. Vol. 167 (2005), p.251–264.

Google Scholar

[19] S. Karnik, V. Gaitonde, J.C. Rubio, A.E. Correia, A. Abrão, J.P. Davim: Mater. Des. Vol. 29 (2008), p.1768–1776.

Google Scholar

[20] T. Grilo, R. Paulo, C. Silva, J. Davim, Compos. PartB: Eng. Vol. 45 (2013), p.1344–1350.

Google Scholar