Proposal of an Educational Methodology to Analyze Cutting Temperature in Turning Operations by Infrared Themography

Article Preview

Abstract:

The present work develops a learning methododology based on experiments related to the cutting temperature concept in turning processes. This proposal allows students to measure the temperature actually reached during a typical turning operation with a semi-automatic lathe. Temperature data are collected by a thermographic camera, which implies acquiring competences in this technique. The different tests involved in the practical experiment are defined for various cutting speeds and feed rates, and for a constant depth of cut. Two different materials are considered to point out the influence of turning parameters on cutting temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-39

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kalpakjian, S., Schmid, S. (2014). Manufacturing. Engineering and Technology. Pearson Higher Ed. Singapore.

Google Scholar

[2] Groover, M.P. (2010). Fundamentals of Modern Manufacturing. Wiley Ed. United States.

Google Scholar

[3] López de Lacalle, L.N., Sánchez, J.A., Lamikiz, A. (2004). Mecanizado alto rendimiento. Ediciones Técnicas Izaro Ed. Vizcaya.

Google Scholar

[4] O'Sullivan, D., Cotterell, M. (2001). Temperature measurement in single point turning. Journal of Materials Procesing Technology, 118 (1-3), 301-308.

DOI: 10.1016/s0924-0136(01)00853-6

Google Scholar

[5] Sun, F.J., Qu, S.G., Pan, Y.X., Li, X.Q., Li, F.L. (2015). Effects of cutting parameters on dry machining Ti-6Al-4V alloy with ultra-hard tools. The International Journal of Advanced Manufacturing Technology, 79 (1), 351-360.

DOI: 10.1007/s00170-014-6717-3

Google Scholar

[6] Medina Ríos, N. (2015).

Google Scholar

[7] Abukhshim, N.A., Mativenga, P.T., Sheikh, M.A. (2006). Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. International Journal of Machine Tools and Manufacture, 46 (7-8), 782-800.

DOI: 10.1016/j.ijmachtools.2005.07.024

Google Scholar

[8] Minkina, W. & Dudzik, S. (2009). Infrared Thermography: Errors and Uncertainties. Wiley Ed. Great Britain.

Google Scholar

[9] Pittalà, G.M., Monno, M. (2011). A new approach to the prediction of temperature of the workpiece of face milling operations of Ti-6Al-4V. Applied Thermal Engineering, 31 (2-3), 173-180.

DOI: 10.1016/j.applthermaleng.2010.08.027

Google Scholar

[10] Rué, J. (2007). Enseñar en la Universidad: El EEES como reto para la Educación Superior. Narcea Ediciones. España.

Google Scholar

[11] Comunicado de Bergen (2005). The European Higher Education Area. Achieving the goals.

Google Scholar

[12] Bogumil, F.T., Abad, F. (2008). Mejoras del Aprendizaje y del Rendimiento de Grupos Reducidos de Estudiantes en una Asignatura de Proyectos de Ingeniería. Formación Universitaria, 1 (3), 13-20.

DOI: 10.4067/s0718-50062008000300003

Google Scholar

[13] Medina, N., Lambea, P., Manjabacas, M.C., Miguel, V., Martínez-Martínez, A., Coello, J., Evaluating temperature in faced milling operations by infrared thermography, Thermal Science 2016 OnLine-First Issue 00, 130-130, doi: 10. 2298/TSCI160126130M.

DOI: 10.2298/tsci160126130m

Google Scholar

[14] Medina, N., Miguel, V., Manjabacas, M.C., Martínez-Martínez, A., Ayllón, J., Coello, J., Evaluating temperature in faced milling operations by infrared thermography, Thermal Science 2016 OnLine-First Issue 00, 273-273, doi: 10. 2298/TSCI160803273M.

DOI: 10.2298/tsci160126130m

Google Scholar