Learning Chip Type Strategies in Turning Processes by Viewing with High-Speed Video Cameras

Article Preview

Abstract:

This work develops a methodology that allowed students to associate the effect of some cutting variables with chip type. For that, turning processes were carried out on two different materials since their physical and mechanical properties have a relevant influence on the chip formation. Cutting tests were run by varying the feed rate, while cutting speed and depth of cut had fixed values. These cutting conditions led to different chip geometries being obtained. Thus, it was possible to establish a chip type classification in turning operations. The methodology herein presented is based on new technologies, which raised great expectations among students, who positively considered this experience. The effect of other variables, apart from feed rate, must be theoretically analyzed in order to improve the comprenhension of the process herein involved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-16

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kalpakjian, S., Schmid, S. Manufacturing. Engineering and Technology. Pearson Higher Ed. Singapore, (2014).

Google Scholar

[2] Sandvik Coromant. El mecanizado moderno. AB Sandvik Coromant Ed. Suecia, (1994).

Google Scholar

[3] Groover, M.P. Fundamentals of Modern Manufacturing. Wiley Ed. United States, (2010).

Google Scholar

[4] Lopez de Lacalle, L.N., Sánchez, J.A., Lamikiz, A. Mecanizado alto rendimiento. Ediciones Técnicas Izaro Ed. Vizcaya, (2004).

Google Scholar

[5] ISO 3685: 1993. Tool-life testing with single-point turning tools, ISO (1993).

Google Scholar

[6] Cao, Y., Kawara, Z., Yokomine, T., Kunugi, T. (2015). Visualization study on bubble dynamical behavior in subcooled flow boiling under various subcooling degree and flowrates. International Journal of Heat and Mass Transfer, 93, 839-852.

DOI: 10.1016/j.ijheatmasstransfer.2015.10.053

Google Scholar

[7] Petukhov, V.A., Bublik, N.P., Gusev, P.A., Gutkin, L.D., Solntsev, O.I. Influence of the initiation energy on development of hydrogen-air mixtures combustion in large spherical volumes. High Temperature, 54 (1), (2016) 99-104.

DOI: 10.1134/s0018151x16010089

Google Scholar

[8] Kostinskiy, A.Y., Syssoev, V.S., Mareev, E.A., Rakov, V.A., Andreev, M.G. (2015).

Google Scholar

[9] Zhao, Z., Song, B., Yan, X., Yao, Q., Cao, X. (2015). Flow and Heat Transfer Characteristics of Two-Phase Fluid in Inclined Pipes on a Rotation Platform. Heat Transfer-Asian Research, 44 (8), (2015) 753-764.

DOI: 10.1002/htj.21151

Google Scholar

[10] Medina Ríos, N. Caracterización Térmica del Proceso de Cilindrado Mediante Termografía Infrarroja y la Metodología de la Superficie de Respuesta Aplicado a Diversos Materiales. Caracterización del Tipo de Viruta Mediante Aplicación de Vídeo de Alta Velocidad. Trabajo Fin de Máster, Universidad de Castilla-La Mancha, Escuela de Ingenieros Industriales, Albacete, (2015).

DOI: 10.17660/ejhs.2021/86.1.6

Google Scholar

[11] Rué, J. Enseñar en la Universidad: El EEES como reto para la Educación Superior. Narcea Ediciones. España, (2007).

Google Scholar

[12] Comunicado de Bergen (2005). The European Higher Education Area. Achieving the goals, (2005).

Google Scholar

[13] Bogumil, F.T., Abad, F. Mejoras del Aprendizaje y del Rendimiento de Grupos Reducidos de Estudiantes en una Asignatura de Proyectos de Ingeniería. Formación Universitaria, 1 (3), (2008) 13-20.

DOI: 10.4067/s0718-50062008000300003

Google Scholar