Numerical Evaluation of a High Speed Steel Work Roll during Hot Strip Rolling Process

Article Preview

Abstract:

Hot strip rolling process is one of the most promising industrial processes to fabricate finished or semi-finished bulk products. Numerical analysis on the temperature and thermal stress distributions in a high speed steel work roll during hot rolling has been conducted based on a transient thermo-mechanical model. Influence of initial work roll body temperature on temperature and thermal stress has been discussed in detail by assuming different rolling stages. Compared to the work roll surface, stress is much smaller at depth of 2.1 mm and 5.0 mm, respectively. Results showed similar maximum circumferential thermal stress at both depths of 2.1 mm and 5.0 mm when the roll has initial temperature of 25 °C and 100 °C, but they are about 3 times and 8 times larger than at depth of 2.1 mm and 5.0 mm, respectively, when the initial temperature is 200 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.Y. Deng, Q. Zhu, K. Tieu, H.T. Zhu, M. Reid, A.A. Saleh, L.H. Su, T.D. Ta, J. Zhang, C. Lu, Q. Wu, D.L. Sun. Evolution of microstructure, temperature and stress in a high speed steel work roll during hot rolling: Experiment and modeling. J. Mater Process. Technol. 240 (2017).

DOI: 10.1016/j.jmatprotec.2016.09.025

Google Scholar

[2] M. Boccalini Jr., A. Sinatora. Microstructure and wear resistance of high speed steels for rolling mill rolls. Proceed. of 6th Int. Tool. Conf. (TOOL) (2002) 509-524.

Google Scholar

[3] P.G. Steven, K.P. Ivens, P. Harper. Increasing work-roll life by improved roll cooling practice. J. Iron Steel Inst. 209 (1971) 1-11.

Google Scholar

[4] G. Deng, C. Lu, L.H. Su, A.K. Tieu, H.L. Yu, X.H. Liu. Investigation of sample size effect on the deformation heterogeneity and texture development during equal channel angular pressing. Comp. Mater. Sci. 74 (2013) 75-85.

DOI: 10.1016/j.commatsci.2013.03.007

Google Scholar

[5] P. Wei, C. Lu, K. Tieu, L. Su, G. Deng, W. Huang. A study on the texture evolution mechanism of nickel single crystal deformed by high pressure torsion. Mater. Sci. Eng. A 684 (2017) 239-248.

DOI: 10.1016/j.msea.2016.11.098

Google Scholar

[6] G. Deng, A.K. Tieu, L.Y. Si, L.H. Su, H. Wang, M. Liu, H.T. Zhu, X.H. Liu. Influence of cold rolling reduction on the deformation behaviour and crystallographic orientation development. Comp. Mater. Sci. 81 (2014) 2-9.

DOI: 10.1016/j.commatsci.2013.06.054

Google Scholar

[7] G.Y. Deng, C. Lu, L.H. Su, A.K. Tieu, J.T. Li, M. Liu, H.T. Zhu, X.H. Liu. Influence of outer corner angle on the plastic deformation and texture evolution in equal channel angular pressing. Comp. Mater. Sci. 81(2014) 79-88.

DOI: 10.1016/j.commatsci.2013.07.006

Google Scholar

[8] C.S. Li, H.L. Yu, G.Y. Deng, X.H. Liu, G.D. Wang. Numerical simulation of temperature field and thermal stress field of work roll during hot strip rolling. J. Iron Steel Res. Int. 14 (2007) 18-21.

DOI: 10.1016/s1006-706x(07)60067-3

Google Scholar

[9] M.P. Guerrero, C.R. Flores, A. Perez, R. Colas. Modelling heat transfer in hot rolling work rolls. J. Mater. Process. Technol. 94 (1999) 52-59.

DOI: 10.1016/s0924-0136(99)00083-7

Google Scholar

[10] G.G. Sun, C.S. Yun, J.S. Chung, S.M. Hwang. Investigation of thermomechanical behaviour of a work roll and of roll life in hot strip rolling. Metall. Mater. Trans. A 29 (1998) 2407-2424.

DOI: 10.1007/s11661-998-0117-y

Google Scholar

[11] F.D. Fischer, W.E. Schreiner, E.A. Werner, C.G. Sun. The temperature and stress fields developing in rolls during hot rolling. J. Mater. Process. Technol. 150 (2004) 263-269.

DOI: 10.1016/j.jmatprotec.2004.02.059

Google Scholar

[12] S. Serajzadeh, F. Mucciardi. Modelling of work-roll temperature variation at unsteady state condition. Model. Simul. Mater. Sci. Eng. 11 (2003) 179-194.

DOI: 10.1088/0965-0393/11/2/306

Google Scholar

[13] D. Benasciutti, E. Brusa, G. Bazzaro. Finite elements prediction of thermal stresses in work roll of hot rolling mills. ProcediaEng. 2(2010) 707-716.

DOI: 10.1016/j.proeng.2010.03.076

Google Scholar

[14] D.H. Na, C.H. Moon, Y.S. Lee. Thermal stress evolution of the roll during rolling and idling in hot strip rolling process. J. Therm. Stresses 37 (2014) 981-1001.

DOI: 10.1080/01495739.2014.913418

Google Scholar

[15] A. Saboonchi, M. Abbaspour. Changing the geometry of water spray on milling roll and its effect on the work roll temperature. J. Mater. Process. Technol. 148(2004) 35-49.

DOI: 10.1016/j.jmatprotec.2004.01.038

Google Scholar

[16] F. Chang. Thermal stresses in work rolls during the rolling of metal strip. J. Mater. Process. Technol. 94 (1999) 45-51.

DOI: 10.1016/s0924-0136(98)00449-x

Google Scholar

[17] L. Xu, J. Xing, S. Wei, Y. Zhang, R. Long. Investigation on wear behaviours of high-vanadium high speed steel compared with high-chromium cast iron under rolling contact condition. Mater. Sci. Eng. A 434 (2006) 63-70.

DOI: 10.1016/j.msea.2006.07.047

Google Scholar