Improving Corrosion Resistance of Hot Extruded Mg-Sn-Al-Ce Magnesium Alloy by Rapid Solidification

Article Preview

Abstract:

The corrosion behavior and microstructure of hot extruded Mg-5 wt.%Sn-4 wt.%Al-2 wt.%Ce alloy by rapid solidification ribbon (RS-EX TAE542) are investigated. The results shows that corrosion resistance of RS-EX alloy is remarkably improved, compared with that of hot extruded TAE542 alloy by homogenized ingot (HI-EX TAE542). Relatively compact corrosion products and bedded corrosion surface of RS-EX alloy is connected with the fine grains and uniform particles caused by rapid solidification, and they can suppress the corrosion reactions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-84

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.L. Mordike, T. Ebert, Magnesium: Properties—applications—potential, Mater. Sci. Eng. A. 302 (2001) 37-45.

Google Scholar

[2] A. Stalmann, W. Sebastian, H. Friedrich, S. Schumann, K. Dröder, Properties and processing of magnesium wrought products for automotive applications, Adv. Eng. Mater. 3 (2001) 969-974.

DOI: 10.1002/1527-2648(200112)3:12<969::aid-adem969>3.0.co;2-9

Google Scholar

[3] F. Cao, Z. Shi, G.L. Song, M. Liu, A. Atrens, Corrosion behaviour in salt spray and in 3. 5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heattreated binary Mg–X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr, Corros. Sci. 76 (2013).

DOI: 10.1016/j.corsci.2013.06.030

Google Scholar

[4] Z. Shi, A. Atrens, An innovative specimen configuration for the study of Mg corrosion, Corros. Sci. 53 (2011) 226–246.

DOI: 10.1016/j.corsci.2010.09.016

Google Scholar

[5] G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater. 1 (1999) 11-33.

Google Scholar

[6] G.L. Makar, J. Kruger, Corrosion studies of rapidly solidified magnesium alloys, J. Electrochem. Soc. 137 (1990) 414-421.

DOI: 10.1149/1.2086455

Google Scholar

[7] J. Wang, Y. Li, S. Huang, X. Zhou, Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn alloys in 3. 5 wt. % NaCl solution, Appl. Surf. Sci. 317 (2014) 1143-1150.

DOI: 10.1016/j.apsusc.2014.09.040

Google Scholar

[8] C. Zhao, F. Pan, S. Zhao, H. Pan, Preparation and characterization of as-extruded Mg–Sn alloys for orthopedic applications, Mater. Des. 70 (2015) 60-67.

DOI: 10.1016/j.matdes.2014.12.041

Google Scholar

[9] M.F. Montemor, A. M Simoes, M.J. Carmezim, Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection, Appl. Surf. Sci. 253 (2007) 6922-6931.

DOI: 10.1016/j.apsusc.2007.02.019

Google Scholar

[10] M. Yamasaki, N. Hayashi, S. Izumi, Y. Kawamura, Corrosion behavior of rapidly solidified Mg–Zn–rare earth element alloys in NaCl solution. Corr. Sci. 49 (2007) 255-262.

DOI: 10.1016/j.corsci.2006.05.017

Google Scholar

[11] S.H. Kim, J.G. Jung, B.S. You, S.H. Park, Effect of Ce addition on the microstructure and mechanical properties of extruded Mg-Sn-Al-Zn alloy, Mater. Sci. Eng. A. 657 (2016) 406-412.

DOI: 10.1016/j.msea.2016.01.073

Google Scholar

[12] S.H. Kim, D.H. Kim, N.J. Kim, Structure and properties of rapidly solidified Mg-Al-Zn-Nd alloys, Mater. Sci. Eng. A. 226 (1997) 1030-1034.

DOI: 10.1016/s0921-5093(96)10852-2

Google Scholar

[13] F. Cao, Z. Shi, G.L. Song, M. Liu, M.S. Dargusch, A. Atrens, Influence of hot rolling on the corrosion behavior of several Mg–X alloys, Corr. Sci. 90 (2015) 176-191.

DOI: 10.1016/j.corsci.2014.10.012

Google Scholar

[14] M. Yamasaki, S. Izumi, Y. Kawamura, H. Habazaki, Corrosion and passivation behavior of Mg–Zn–Y–Al alloys prepared by cooling rate-controlled solidification, Appl. Surf. Sci. 257 (2011) 8258-8267.

DOI: 10.1016/j.apsusc.2011.01.046

Google Scholar

[15] H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, E. Hamzah, Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys, Mater. Des. 53 (2014) 283-292.

DOI: 10.1016/j.matdes.2013.06.055

Google Scholar

[16] M. Su, J. Zhang, Y. Feng, Y. Bai, W. Wang, Z. Zhang, F. Jiang, Al-Nd intermetallic phase stability and its effects on mechanical properties and corrosion resistance of HPDC Mg-4Al-4Nd-0. 2 Mn alloy, J. Alloy. Compd. 691 (2017) 634-643.

DOI: 10.1016/j.jallcom.2016.08.310

Google Scholar