New Developments of the Materials Science Diffractometer STRESS-SPEC

Article Preview

Abstract:

The high flux neutron diffractometer STRESSSPEC at FRM II, Garching Germany, offers a flexible instrument setup suitable for fast and surface residual strain measurements. Likewise bulk, local or gradient texture analyses are feasible. Here improvements of the hardware (detector, slits) of the instrument as well as developments on methods for residual stress analysis are presented. A new detector system developed inhouse was recently installed and successfully commissioned. Compared to the original delay line detector the new detector provides much higher resolution and allows event mode type measurements. Results of the commissioning measurements show a performance increase of nearly a factor of 2 compared to the former detector. Moreover the new analytical model, recently developed for surface spurious strain corrections, was successfully applied at a welded austenitic steel sample. Thus nondestructive measurements from the surface (200 μm) into the bulk (several millimeters) are possible without any extra time consuming experiments for spurious strains corrections.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-156

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Hofmann, G. A. Seidl, J. R. Kornmeier, U. Garbe, R. Schneider R. C. Wimpory, U. Wasmuth, U. Noster, Mater. Sci. Forum, 524–525 (2006) 211–216.

DOI: 10.4028/www.scientific.net/msf.524-525.211

Google Scholar

[2] H. -G. Brokmeier, W.M. Gan, C. Randau, M. Völler, J. Rebelo-Kornmeier, M. Hofmann, Nucl. Instrum. Methods Phys. Res. A, 642-1 (2011) 87–92.

DOI: 10.1016/j.nima.2011.04.008

Google Scholar

[3] C. Randau, H. Brokmeier, W. Gan, M. Hofmann, M. Voeller, W. Tekouo, A. Schreyer, Nucl. Instrum. Methods Phys. Res. A, 794 (2015) 67-75.

Google Scholar

[4] C. Ohms, R. V. Martins, O. Uca, A. G. Youtsos, P. J. Bouchard, M. Smith, M. Keavey, S. K. Bate, P. Gilles, R. C. Wimpory, L. Edwards, ASME 2008 Pressure Vessels and Piping Conference Volume 6: Materials and Fabrication, Parts A and B, (2008).

DOI: 10.1115/pvp2008-61913

Google Scholar

[5] Information on http: /nmi3. eu/about-nmi3/joint-research-activities/previous-projects/fp6. html.

Google Scholar

[6] H. Schober, M. Förster, J. Savin, NIM3: New funding, new project, Neutron news, 22 (2011) 40-41.

Google Scholar

[7] Information on http: /forge. frm2. tum. de/redmine/projects/qmesydaq.

Google Scholar

[8] Johnson M W and Daymond M R, J. Applied Crystallography, 35 (2002) 49–57.

Google Scholar

[9] J. Šaroun, J. R. Kornmeier, M. Hofmann, P. Mikula, M. Vrana, J. Applied Crystallography, 46 (2013) 628–638.

Google Scholar

[10] J. R. Kornmeier, J. Šaroun, J. Gibmeier, M. Hofmann, Mater. Sci. Forum 768-769 (2014) 52-59.

DOI: 10.4028/www.scientific.net/msf.768-769.52

Google Scholar

[11] Mike C. Smith, Ondrej Muránsky, Colin Austin, Philip J. Bendeich and Lyndon Edwards, ASME 2012 Pressure Vessels and Piping Conference Volume 6: Materials and Fabrication, Parts A and B, (2012) 1125-1137.

Google Scholar

[12] R.V. Martins, C. Ohms, K. Decroos, Materials Science Engineering A, 527 (2010) 4779–4787.

Google Scholar

[13] B. Eigenmann, E. Macherauch, Mat. -wiss. U. Werkstofftech. 27 (1996) 426-437.

Google Scholar