Scanning Three-Dimensional X-Ray Diffraction Microscopy with a High-Energy Microbeam at SPring-8

Article Preview

Abstract:

The grain-resolved residual stress (type II) in commercial-quality low carbon steel was observed using scanning three-dimensional X-ray diffraction (3DXRD) microscopy. In this method, grain orientations and lattice parameters are mapped using a monochromatic high-energy X-ray microbeam and 3DXRD-based polycrystalline indexing. Defining the reference lattice parameter a0 as the average value in the entire field of view, grain orientations and lattice parameters are converted into stress tensors, yielding a grain-resolved stress tensor map. The effectiveness of the scanning 3DXRD method was demonstrated by evaluating the residual stress in a cold-rolled low carbon steel sheet using a 50 keV microbeam at SPring-8. The area of the cross-sectional sample was 1×1 mm2, which was sufficiently larger than the grain size of about 20 μm. To produce a two-dimensional map of a circular region with a diameter of 160 μm at a pixel size of 1×1 μm2, the measurement time was about 1 h. From the stress tensor map, differences in residual stress of about 150–200 MPa between some neighboring grains were observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-164

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. F. Poulsen, Three-Dimensional X-ray Diffraction, Springer, Berlin, (2004).

Google Scholar

[2] H. F. Poulsen, Three-dimensional X-ray Diffraction, in: J. Banhart (Ed. ), Advanced Tomographic Methods in Materials Research and Engineering, Oxford University Press, New York, 2008, pp.249-276.

DOI: 10.1093/acprof:oso/9780199213245.003.0009

Google Scholar

[3] H. F. Poulsen, An introduction to three-dimensional x-ray diffraction microscopy, J. Appl. Cryst. 45 (2012) 1084-1097.

DOI: 10.1107/s0021889812039143

Google Scholar

[4] E. M. Lauridsen, S. Schmidt, R. M. Suter and H. F. Poulsen, Tracking: a method for structural characterization of grains in powders or polycrystals, J. Appl. Cryst. 34 (2001) 744-750.

DOI: 10.1107/s0021889801014170

Google Scholar

[5] W. Ludwig, P. Reischig, A. King, M. Herbig, E. M. Lauridsen, G. Johnson, T. J. Marrow and J. Y. Buffière, Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis, Rev. Sci. Instrum. 80 (2009).

DOI: 10.1063/1.3100200

Google Scholar

[6] M. Moscicki, P. Kenesei, J. Wright, H. Pinto, T. Lippmann, A. Borbély and A. R. Pyzalla, Friedel-pair based indexing method for characterization of single grains with hard x-rays, Mater. Sci. Eng. A, 524 (2009) 64-68.

DOI: 10.1016/j.msea.2009.05.002

Google Scholar

[7] J. Oddershede, S. Schmidt, H. F. Poulsen, H. O. Sørensen, J. Wright and W. Reimers, Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction, J. Appl. Cryst. 43 (2010) 359-549.

DOI: 10.1107/s0021889810012963

Google Scholar

[8] J. V. Bernier, N. R. Barton, U. Lienert and M. P. Miller, Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis, J. Strain Anal. Eng. Des. 46 (2011) 527-547.

DOI: 10.1177/0309324711405761

Google Scholar

[9] J. K. Edmiston, N. R. Barton, J. V. Bernier, G. C. Johnson and D. J. Steigmann, Precision of lattice strain and orientation measurements using high-energy monochromatic X-ray diffraction, J. Appl. Cryst. 44 (2011) 299-312.

DOI: 10.1107/s0021889811002123

Google Scholar

[10] C. C. Aydiner, J. V. Bernier, B. Clausen, U. Lienert, C. N. Tome and D. W. Brown, Evolution of stress in individual grains and twins in a magnesium alloy aggregate, Phys. Rev. B 80 (2009) 024113.

DOI: 10.1103/physrevb.80.024113

Google Scholar

[11] J. Oddershede, B. Camin, S. Schmidt, L. P. Mikkelsen, H. O. Sørensen, U. Lienert, H. F. Poulsen and W. Reimers, Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction, Acta Mater. 60 (2012).

DOI: 10.1016/j.actamat.2012.02.054

Google Scholar

[12] L. Wang, J. Lind, H. Phukan, P. Kenesei, J. S. Park, R. M. Suter, A. J. Beaudoin and T. R. Bieler,  Mechanical twinning and detwinning in pure Ti during loading and unloading – An in situ high-energy X-ray diffraction microscopy study, Scripta Mater. 92 (2014).

DOI: 10.1016/j.scriptamat.2014.08.008

Google Scholar

[13] H. Abdolvand, M. Majkut, J. Oddershede, J. P. Wright and M. R. Daymond, Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part I – in-situ three-dimensional synchrotron X-ray diffraction measurement, Acta Mater. 93 (2015).

DOI: 10.1016/j.actamat.2015.04.020

Google Scholar

[14] Y. Hayashi, Y. Hirose and Y. Seno, Polycrystal orientation mapping using scanning three-dimensional X-ray diffraction microscopy, J. Appl. Cryst. 48 (2015), 1094-1101.

DOI: 10.1107/s1600576715009899

Google Scholar

[15] Information on http: /sourceforge. net/p/fable/wiki/imaged11.

Google Scholar

[16] G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, (1971).

Google Scholar

[17] S. Matsuyama, H. Mimura, H. Yumoto, H. Hara, K. Yamamura, Y. Sano, K. Endo, Y. Mori, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa and K. Yamauchi, Development of mirror manipulator for hard-x-ray nanofocusing at sub-50-nm level, Rev. Sci. Instrum. 77 (2006).

DOI: 10.1063/1.2349594

Google Scholar