Using Underwater Shockwaves for the Development of Processing Devices for Plant Materials

Article Preview

Abstract:

In this study, we have established a novel pretreatment system that improves the juice extraction volume and nutritional value of plant material using underwater shockwaves. The optimum treatment conditions for plant materials were obtained by conducting batch experiments using simple-structured underwater shockwave treatment equipment. From these results, a continuous underwater shockwave processing device was designed. Moreover, we have been demonstrated the applicability and reliability of underwater shockwave pretreatment in improving the yield of functional ingredients and fruit juice from plants. The instantaneous high-pressure dynamic control using underwater shockwaves is applicable to a wide range of extraction processes such as extraction of juices or ingredients from other naturally occurring foods and medicinal plants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-175

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Khandare, S. Walia, M. Singh, C. Kaur, Black carrot (Daucus carota ssp. sativus) juice: Processing effects on antioxidant composition and color, Food Bioprod. Process. 89 (2011) 482–486.

DOI: 10.1016/j.fbp.2010.07.007

Google Scholar

[2] T. M. Rababah, M. A. Al-Mahasneh, I. Kilani, W. Yang, M.N. Alhamad, K. Ereifej, M. Al-u'datt, Effect of jam processing and storage on total phenolics, antioxidant activity, and anthocyanins of different fruits. J. Sci. Food Agric. 91 (2011).

DOI: 10.1002/jsfa.4289

Google Scholar

[3] S. Rosenthal, S. Jansky, Effect of production site and storage on antioxidant levels in specialty potato (Solanum tuberosum L. ) tubers. J. Sci. Food Agric. 88 (2008), 2087–(2092).

DOI: 10.1002/jsfa.3318

Google Scholar

[4] A. Oda, N. Okamoto, S. Itoh, Study on the Relationship between Some Foods and Underwater Shock Wave Using the Explosion of the Detonation Fuse, Materials Science Forum 566 (2008) 197-202.

DOI: 10.4028/www.scientific.net/msf.566.197

Google Scholar

[5] H. Maehara, T. Watanabe, A. Takemoto, and S. Itoh, A new processing of ginger using the underwater shock wave, Mater. Sci. Forum 673 (2011) 215–218.

DOI: 10.4028/www.scientific.net/msf.673.215

Google Scholar

[6] E. Kuraya, Y. Miyafuji, A. Takemoto, and S. Itoh, The effect of underwater shock waves on steam distillation of Alpinia zerumbet leaves, Trans. Mater. Res. Soc. Japan 39, no. 4 (2014) 447–449.

DOI: 10.14723/tmrsj.39.447

Google Scholar

[7] H. Maehara, T. Watanabe, A. Takemoto, and S. Itoh, Tomato Saponin Extraction by Shock Wave, Chemical & Pharmaceutical Bull. 59 no. 11 (2011) 1406-1408.

DOI: 10.1248/cpb.59.1406

Google Scholar

[8] J. Maroušek, et al., Pressure shockwaves to enhance oil extraction from Jatropha curcas L, Biotechnol. Biotechnol. Equip. 27 (2013) 3654–3658.

DOI: 10.5504/bbeq.2012.0143

Google Scholar

[9] N. Boussetta, N. Lebovka, E. E. Vorobiev, H. Adenier, C. Bedel-Cloutour, and J. -L. L. Lanoisellé, Electrically assisted extraction of soluble matter from chardonnay grape skins for polyphenol recovery, J. Agric. Food Chem. 57, no. 4 (2009).

DOI: 10.1021/jf802579x

Google Scholar

[10] E. Kuraya, S. Nakada, A. Touyama, and S. Itoh, Improving the antioxidant functionality of Citrus junos Tanaka (yuzu) fruit juice by underwater shockwave pretreatment, Food Chem. 216 (2017) 123–129.

DOI: 10.1016/j.foodchem.2016.08.026

Google Scholar

[11] A. Yasuda, E. Kuraya, A. Touyama, O. higa, K. Hokamoto, and S. Itoh, Underwater shockwave pretreatment process for improving carotenoid content and yield of extracted carrot (Daucus carota L. ) juice, Journal of Food Engineering, in Press (2017).

DOI: 10.1016/j.jfoodeng.2017.04.026

Google Scholar

[12] O. Higa, R. Matsubara, K. Higa, Y. Miyafuji, T. Gushi, Y. Omine, K. Naha, K. Shimojima, H. Fukuoka, H. Maehara, S. Tanaka, T. Matsui, S. Itoh, Mechanism of the shock wave generation and energy efficiency by underwater discharge, Int. J. of Multiphys. 6, no. 2 (2012).

DOI: 10.1260/1750-9548.6.2.89

Google Scholar

[13] K. Higa, T. Matsui, S. Hanashiro, O. Higa, S. Itoh, Evaluation of the contact switch materials in high voltage power supply for generate of underwater shockwave by electrical discharge, Int. J. of Multiphys. 8, no. 4 (2015) 359-366.

DOI: 10.1260/1750-9548.8.4.359

Google Scholar

[14] O. Higa, A. Yasuda, Y. Higa, K. Shimojima, K. Hokamoto, and S. Itoh, Optical examination of shockwave propagation induced by an underwater wire explosion, Int. J. of Multiphys. 11, no. 4 (2016) 343-353.

Google Scholar

[15] M. Otsuka, T. Watanabe, S. Itoh, Numerical Simulation for Development of Pressure Vessel for Food Processing by Shock Loading, ASME 2006 Pressure Vessels & Piping Division Conference PVP2006, PVP2006-ICPVT-11-93470, (2006).

DOI: 10.1115/pvp2006-icpvt-11-93470

Google Scholar

[16] K. Shimojima, Y. Higa, O. Higa, A. Takemoto, H. Iyama, A. Yasuda, T. Watanabe, and S. Itoh, Visualization of Shock Wave Propagation Behavior of the General-Purpose Batch Processing for Pressure Vessel by Numerical Simulation, ASME 2016 Pressure Vessels & Piping Division Conference PVP2016, PVP2016-63510, (2016).

DOI: 10.1115/pvp2016-63510

Google Scholar

[17] S.P. March, LASL Shock Hugoniot Data, University of California Press (1980).

Google Scholar

[18] Z.Y. Liu, High-speed photographic study on overdriven detonation of high explosive, Proc. SPIE 4183, 24th International Congress on High-Speed Photography and Photonics 731, vol. 10. 1117/12 (2001) 424348.

DOI: 10.1117/12.424348

Google Scholar

[19] A. Osada, H. Hamashima, Y. Kato, and S. Itoh, Study on low velocity detonation phenomena in Nitromethane, Int. J. of Multiphys. 3 (2009) 1-10.

DOI: 10.1260/175095409787924517

Google Scholar

[20] E. Kuraya, Y. Toyoshima, S. Nakada, A. Takemoto, S. Itoh, Properties of essential oil extracted from Alpinia zerumbet flowers, Natural Volatiles & Essential Oils, 1 Special Issue (2014).

Google Scholar

[21] E. Kuraya, R. Yamashiro, A. Touyama, S. Nakada, K. Watanabe, A. Iguchi and S. Itoh, Aroma Profile and Antioxidant Activity of Essential Oil from Alpinia zerumbet, Natural Product Communications in Press (2017).

DOI: 10.1177/1934578x1701200842

Google Scholar

[22] K. Shimojima, Y. Miyafuji, K. Naha, O. Higa, R. Matsubara, K. Higa, Y. Higa, T. Matsui, A. Takemoto, S. Tanaka, H. Maehara, and S. Itoh, Development of the rice-powder manufacturing system using underwater shock wave, Int. J. of Multiphys. 6, no. 4 (2012).

DOI: 10.1260/1750-9548.6.4.355

Google Scholar

[23] K. Shimojima, O. Higa, K. Higa, Y. Higa, A. Takemoto, A. Yasuda, M. Yamato, M. Nakazawa, H. Iyama, T. Watanabe, S. Itoh, Development of milling flour machine of rice powder using instantaneous high pressure, 1st Report, development of continuous driving device and componential analysis of rice powder, Jpn. J. Food Eng. 16, no. 4 (2015).

DOI: 10.11301/jsfe.16.297

Google Scholar

[24] M. Fikselová, S. Šilhár, J. Marecek, H. Francáková, M. Fikselova, S. Silhar, J. Marecek, H. Francakova, Extraction of carrot (Daucus carota L. ) carotenes under different conditions. Czech J. Food Sci. 26 (2008), 268–274.

DOI: 10.17221/9/2008-cjfs

Google Scholar