[1]
V. Khandare, S. Walia, M. Singh, C. Kaur, Black carrot (Daucus carota ssp. sativus) juice: Processing effects on antioxidant composition and color, Food Bioprod. Process. 89 (2011) 482–486.
DOI: 10.1016/j.fbp.2010.07.007
Google Scholar
[2]
T. M. Rababah, M. A. Al-Mahasneh, I. Kilani, W. Yang, M.N. Alhamad, K. Ereifej, M. Al-u'datt, Effect of jam processing and storage on total phenolics, antioxidant activity, and anthocyanins of different fruits. J. Sci. Food Agric. 91 (2011).
DOI: 10.1002/jsfa.4289
Google Scholar
[3]
S. Rosenthal, S. Jansky, Effect of production site and storage on antioxidant levels in specialty potato (Solanum tuberosum L. ) tubers. J. Sci. Food Agric. 88 (2008), 2087–(2092).
DOI: 10.1002/jsfa.3318
Google Scholar
[4]
A. Oda, N. Okamoto, S. Itoh, Study on the Relationship between Some Foods and Underwater Shock Wave Using the Explosion of the Detonation Fuse, Materials Science Forum 566 (2008) 197-202.
DOI: 10.4028/www.scientific.net/msf.566.197
Google Scholar
[5]
H. Maehara, T. Watanabe, A. Takemoto, and S. Itoh, A new processing of ginger using the underwater shock wave, Mater. Sci. Forum 673 (2011) 215–218.
DOI: 10.4028/www.scientific.net/msf.673.215
Google Scholar
[6]
E. Kuraya, Y. Miyafuji, A. Takemoto, and S. Itoh, The effect of underwater shock waves on steam distillation of Alpinia zerumbet leaves, Trans. Mater. Res. Soc. Japan 39, no. 4 (2014) 447–449.
DOI: 10.14723/tmrsj.39.447
Google Scholar
[7]
H. Maehara, T. Watanabe, A. Takemoto, and S. Itoh, Tomato Saponin Extraction by Shock Wave, Chemical & Pharmaceutical Bull. 59 no. 11 (2011) 1406-1408.
DOI: 10.1248/cpb.59.1406
Google Scholar
[8]
J. Maroušek, et al., Pressure shockwaves to enhance oil extraction from Jatropha curcas L, Biotechnol. Biotechnol. Equip. 27 (2013) 3654–3658.
DOI: 10.5504/bbeq.2012.0143
Google Scholar
[9]
N. Boussetta, N. Lebovka, E. E. Vorobiev, H. Adenier, C. Bedel-Cloutour, and J. -L. L. Lanoisellé, Electrically assisted extraction of soluble matter from chardonnay grape skins for polyphenol recovery, J. Agric. Food Chem. 57, no. 4 (2009).
DOI: 10.1021/jf802579x
Google Scholar
[10]
E. Kuraya, S. Nakada, A. Touyama, and S. Itoh, Improving the antioxidant functionality of Citrus junos Tanaka (yuzu) fruit juice by underwater shockwave pretreatment, Food Chem. 216 (2017) 123–129.
DOI: 10.1016/j.foodchem.2016.08.026
Google Scholar
[11]
A. Yasuda, E. Kuraya, A. Touyama, O. higa, K. Hokamoto, and S. Itoh, Underwater shockwave pretreatment process for improving carotenoid content and yield of extracted carrot (Daucus carota L. ) juice, Journal of Food Engineering, in Press (2017).
DOI: 10.1016/j.jfoodeng.2017.04.026
Google Scholar
[12]
O. Higa, R. Matsubara, K. Higa, Y. Miyafuji, T. Gushi, Y. Omine, K. Naha, K. Shimojima, H. Fukuoka, H. Maehara, S. Tanaka, T. Matsui, S. Itoh, Mechanism of the shock wave generation and energy efficiency by underwater discharge, Int. J. of Multiphys. 6, no. 2 (2012).
DOI: 10.1260/1750-9548.6.2.89
Google Scholar
[13]
K. Higa, T. Matsui, S. Hanashiro, O. Higa, S. Itoh, Evaluation of the contact switch materials in high voltage power supply for generate of underwater shockwave by electrical discharge, Int. J. of Multiphys. 8, no. 4 (2015) 359-366.
DOI: 10.1260/1750-9548.8.4.359
Google Scholar
[14]
O. Higa, A. Yasuda, Y. Higa, K. Shimojima, K. Hokamoto, and S. Itoh, Optical examination of shockwave propagation induced by an underwater wire explosion, Int. J. of Multiphys. 11, no. 4 (2016) 343-353.
Google Scholar
[15]
M. Otsuka, T. Watanabe, S. Itoh, Numerical Simulation for Development of Pressure Vessel for Food Processing by Shock Loading, ASME 2006 Pressure Vessels & Piping Division Conference PVP2006, PVP2006-ICPVT-11-93470, (2006).
DOI: 10.1115/pvp2006-icpvt-11-93470
Google Scholar
[16]
K. Shimojima, Y. Higa, O. Higa, A. Takemoto, H. Iyama, A. Yasuda, T. Watanabe, and S. Itoh, Visualization of Shock Wave Propagation Behavior of the General-Purpose Batch Processing for Pressure Vessel by Numerical Simulation, ASME 2016 Pressure Vessels & Piping Division Conference PVP2016, PVP2016-63510, (2016).
DOI: 10.1115/pvp2016-63510
Google Scholar
[17]
S.P. March, LASL Shock Hugoniot Data, University of California Press (1980).
Google Scholar
[18]
Z.Y. Liu, High-speed photographic study on overdriven detonation of high explosive, Proc. SPIE 4183, 24th International Congress on High-Speed Photography and Photonics 731, vol. 10. 1117/12 (2001) 424348.
DOI: 10.1117/12.424348
Google Scholar
[19]
A. Osada, H. Hamashima, Y. Kato, and S. Itoh, Study on low velocity detonation phenomena in Nitromethane, Int. J. of Multiphys. 3 (2009) 1-10.
DOI: 10.1260/175095409787924517
Google Scholar
[20]
E. Kuraya, Y. Toyoshima, S. Nakada, A. Takemoto, S. Itoh, Properties of essential oil extracted from Alpinia zerumbet flowers, Natural Volatiles & Essential Oils, 1 Special Issue (2014).
Google Scholar
[21]
E. Kuraya, R. Yamashiro, A. Touyama, S. Nakada, K. Watanabe, A. Iguchi and S. Itoh, Aroma Profile and Antioxidant Activity of Essential Oil from Alpinia zerumbet, Natural Product Communications in Press (2017).
DOI: 10.1177/1934578x1701200842
Google Scholar
[22]
K. Shimojima, Y. Miyafuji, K. Naha, O. Higa, R. Matsubara, K. Higa, Y. Higa, T. Matsui, A. Takemoto, S. Tanaka, H. Maehara, and S. Itoh, Development of the rice-powder manufacturing system using underwater shock wave, Int. J. of Multiphys. 6, no. 4 (2012).
DOI: 10.1260/1750-9548.6.4.355
Google Scholar
[23]
K. Shimojima, O. Higa, K. Higa, Y. Higa, A. Takemoto, A. Yasuda, M. Yamato, M. Nakazawa, H. Iyama, T. Watanabe, S. Itoh, Development of milling flour machine of rice powder using instantaneous high pressure, 1st Report, development of continuous driving device and componential analysis of rice powder, Jpn. J. Food Eng. 16, no. 4 (2015).
DOI: 10.11301/jsfe.16.297
Google Scholar
[24]
M. Fikselová, S. Šilhár, J. Marecek, H. Francáková, M. Fikselova, S. Silhar, J. Marecek, H. Francakova, Extraction of carrot (Daucus carota L. ) carotenes under different conditions. Czech J. Food Sci. 26 (2008), 268–274.
DOI: 10.17221/9/2008-cjfs
Google Scholar