Hydrophilicity, Solubility and Optical Properties in Composite Films of Gelatin and Bentonite Clay in its Natural Form or Modified

Article Preview

Abstract:

Bentonite clay was initially treated with a quaternary ammonium salt to increase its hydrophobicity, and then was dispersed in a gelatin matrix to serve as barrier to water vapor. The clays were characterized by IR spectroscopy in the infrared (FTIR), and X-ray diffraction (XRD), before and after ion exchange. The ion exchange held in the clay provokes on gelatin film a reduction of 65% in the water vapor permeability (WVP); a decrease in solubility of 55%; an increase of 35º in drop contact angle of water on the surface of the film; and 30% of raise in opacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-140

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Guerrero, P.M. Stefani, R.A. Ruseckaite, K. De la Caba: Journal of Food Engineering Vol. 105 (2011), p.65.

Google Scholar

[2] B.S. Chiou, R.J. Avena-Bustillos, P.J. Bechtel, S.H. Imam, G.M. Glenn, W.J. Orts: Journal of Food Engineering Vol. 95 (2009), p.327.

DOI: 10.1016/j.jfoodeng.2009.05.011

Google Scholar

[3] M. Pereda, A.G. Ponce, N.E. Marcovich, R.A. Ruseckaite, J.F. Martucci: Food Hydrocolloids Vol. 25 (2011), p.1372.

DOI: 10.1016/j.foodhyd.2011.01.001

Google Scholar

[4] M. Nagarajan, S. Benjakul, T. Prodpran, P. Songtipya: International Journal of Biological Macromolecules Vol. 75 (2015), p.388.

Google Scholar

[5] A. Duconseille, T. Astruc, N. Quintana, F. Meersman, V. Sante-Lhoutellier: Food Hydrocolloids Vol. 43 (2015), p.360.

DOI: 10.1016/j.foodhyd.2014.06.006

Google Scholar

[6] M.F.C. Jorge, C.H.C. Flaker, S.F. Nassar, I.C.F. Moraes, A.M.Q.B. Bittante, P.J.A. Sobral: Journal of Food Engineering Vol. 120 (2014), p.81.

Google Scholar

[7] J.W. Rhim: Carbohydrate Polymers Vol. 86 (2011), p.691.

Google Scholar

[8] M. Huskić, M. Žigon, M. Ivanković: Applied Clay Science Vol. 85 (2013), p.109.

Google Scholar

[9] S.D. Lee, M.S. Park, D.W. Kim, Il Kim, D.W. Park: Catalysis Today Vol. 232 (2014), p.127.

Google Scholar

[10] A. Farahnaky, S.M.M. Dadfar, M. Shahbazi: Journal of Food Engineering Vol. 122 (2014), p.78.

Google Scholar

[11] M. Kotal, A.K. Bhowmick: Progress in Polymer Science Vol. 51 (2015), p.127.

Google Scholar

[12] F.M. Fakhouri, S.M. Martelli, T. Caon, J.I. Velasco, L.H.I. Mei: Postharvest Biology and Technology Vol. 109 (2015), p.57.

Google Scholar

[13] J. Hua: Applied Clay Science Vol. 114 (2015), p.239.

Google Scholar

[14] C.D. Mu, X.Y. Li, Y.G. Zhao, H.G. Zhang, L.J. Wang, D.F. Li: Journal of Applied Polymer Science Vol. 128 (2013), p.3141.

Google Scholar

[15] S. Acosta, A. Jiménez, M. Cháfer, C. González-Martínez, A. Chiralt: Food Hydrocolloids Vol. 49 (2015), p.135.

DOI: 10.1016/j.foodhyd.2015.03.015

Google Scholar

[16] A. Giannakas, K. Grigoriadi, A. Leontiou, N.M. Barkoula, A. Ladavos: Carbohydrate Polymers Vol. 108 (2014), p.103.

DOI: 10.1016/j.carbpol.2014.03.019

Google Scholar

[17] S. Shankar, X. Teng, G. Li, J.W. Rhim: Food Hydrocolloids Vol. 45 (2015), p.264.

Google Scholar

[18] L. Ge, X. Li, R. Zhang, T. Yang, X. Ye, D. Li, C. Mu: Food Hydrocolloids Vol. 51 (2015), p.129.

Google Scholar

[19] C.H.C. Flaker, R.V. Lourenço, A.M.Q.B. Bittante, P.J.A. Sobral: Journal of Food Engineering Vol. 167 (2015), p.65.

Google Scholar

[20] J.W. Rhim: Food Research International Vol. 51 (2013), p.714.

Google Scholar