Composites Obtained from Alumina and Polymer Derived Ceramic

Article Preview

Abstract:

Alumina-mullite composites with low shrinkage can be made by reaction bond using mixtures of alumina, aluminum and silicon carbide. In this work, an alternative route is used to produce alumina composites with low shrinkage. Here alumina samples containing additions of 10 and 20 wt% of a preceramic polymer were warm-pressed and treated in the range of 900 -1500°C to produce alumina based composites. The obtained composites were analyzed by linear shrinkage and compared to pure alumina samples sintered at the same temperature range. It were also evaluated the density variation and crystalline phases formed during heat treatment of alumina composites. Results showed that alumina-silicon oxycarbide and alumina-mullite composites were obtained with lower shrinkage than pure alumina samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-146

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.W. Richerson: Modern Ceramic Engineering. (Marcell Drekker New York, 1992).

Google Scholar

[2] R.M. Rocha, M. Scheffler, J.C. Bressiani, A.H.A. Bressiani: Cerâmica Vol. 51 (2005), p.42.

Google Scholar

[3] P. Colombo, G. Mera, R. Riedel, G.D. Soraru: J. am. Cer. Soc. Vol. 93 (2010), p.1805.

Google Scholar

[4] R. Haug, M. Weinmann, J. Bill, F. Aldinger: J. Eur. Ceram. Soc. Vol. 19 (1) (1999), p.1.

Google Scholar

[5] C. Konetschny, D. Galusek, S. Reschke, C. Fasel, R. Riedel: J. Eur. Ceram. Soc. Vol. 19 (16) (1999), p.2789.

Google Scholar

[6] C.G. Pantano, A. K. Singh, H. X. Zang: J. Am. Cer. Vol. 71 (1987), p.386.

Google Scholar

[7] G.D. Soraru: Sol-gel Sci. Tech. Vol. 2 (1994), p.843.

Google Scholar

[8] H. Brequel, J. Parmentier, G.D. Soraru, L. Schiffini, S. Enzo: NanoStructured Materials Vol. 11 (1999), p.721.

DOI: 10.1016/s0965-9773(99)00360-8

Google Scholar

[9] M.A. Schiavon, J.L. Ferrari, M. Hojamberdiev, I.V. P Yoshida: Quim. Nova Vol. 387 (2015), p.972.

Google Scholar

[10] F.I. Hurwitz, P. Heimann, S.C. Farmer: J. Mat. Sci. Vol. 28 (1993), p.6622.

Google Scholar

[11] D. Chomel, P. Dempsey, J. D. Latournerie, Hourlier-Bahloul, U.A. Jayasoorya: Chem. Mater. Vol. 17 (2005), p.4468.

DOI: 10.1021/cm050501p

Google Scholar

[12] P. Coloban: J. Mater. Sci. 24 (1989), p.3011.

Google Scholar

[13] M. Monthioux, O. Delvedier: J. Eur. Cer. Soc. Vol. 16 (1996), p.721.

Google Scholar

[14] H. Schneider, S. Komarneni: Mullite. (Willey-VHC Weinhein, 2005).

Google Scholar

[15] E. Dörre, H. Hübner: Alumina Processing and Properties. (Springer-Verlag New York, 1984).

Google Scholar

[16] T. Rouxel, S. Gian-Domenico, J. Vicens: J. Am. Ceram. Soc. Vol. 84 (5) (2001), p.1052.

Google Scholar

[17] H.J. Kleebe, F. Siegelin, T. Straubinger, G. Ziegler: J. Eur. Cer. Soc. Vol. 21 (2001), p.2521.

Google Scholar

[18] J. Brus, F. Kolar, V. Machovitz, J. Svitlová: J. Non-Cryst. Solids Vol. 89 (2001), p.62.

Google Scholar

[19] A.L.E. Godoy, J.C. Bressiani, A.H.A. Bressiani: Cerâmica Vol. 56 (2010), p.97.

Google Scholar