Analysis of the Photocatalytic Potential of the C/TiO2 Composite

Article Preview

Abstract:

The control of environmental pollution has led to an intensive search for innovative and efficient technologies for wastewater treatment, especially those with toxic or non-biodegradable compounds. In this sense, this work involved the preparation of a hybrid composite of TiO2 with amorphous carbon by partial pyrolysis method and the analysis of their photocatalytic potential using phenol red dye as a test molecule. The composite was characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The evaluation of morphology and the structural characterization of the powder confirmed the formation of the hybrid composite of TiO2 dispersed in a carbon matrix with turbostratic structure, organized in the shape of overlapping plates. The composite presented a discoloration rate of 67% after 4 hours of irradiation. The photocatalytic reaction follows a kinetics of first order type.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-262

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.F.P. Nogueira, W.F. Jardim: Quím. Nova, Vol. 21 (1998), p.69.

Google Scholar

[2] J. Su, Y. Zhang, S. Xu, S. Wang, H. Ding, S. Pan, G. Wang, G. Li, H. Zhao: Nanoscale Vol. 6 (2014), p.5181.

Google Scholar

[3] E. Tauchert, P. Peralta-Zamora: Eng. Sanit. Ambient. Vol. 9 (2004), p.197.

Google Scholar

[4] P.G.P. Moraes, S. Lanfredi, J. Matos, M.A.L. Nobre: Carbon vVol. 1 (2013).

Google Scholar

[5] J. Matos, E. García-López, L. Palmisano, A. García, G. Marcì: Appl. Catal. B Environ. Vol. 99 (2010) 170.

Google Scholar

[6] J. Matos, A. Garcia, T. Cordero, J.M. Chovelon, C. Ferronato: Catal. Lett. Vol. 130 (2009), p.568.

Google Scholar

[7] J. Matos, K. Quintana, A. Garcia: Eurasian chemico-Technological Journal Vol. 14 (2014), p.1.

Google Scholar

[9] S. Lanfredi, M.A.L. Nobre, P.G.P. Moraes: Ceram. Int. Vol. 40 (2014), p.525.

Google Scholar

[10] S. Lanfredi, G.S. Silveira, B.S. Potensa, M.A.L. Nobre: MRS Advances (2015), p.1.

Google Scholar

[11] M. Pechini. U. S. Patente, 3330697, (1997).

Google Scholar

[12] M.A.L. Nobre. E. Longo, E.R. Leite, J.A. Varela: Mater. Lett. Vol. 28 (1996), p.215.

Google Scholar

[13] JCPDS – International Centre for Diffraction Data. PCPDFWIN v. 2. 1. Copyright© JCPDS-ICDD. (2000).

Google Scholar

[14] L. Lu, V. Sahajwalla, C. Kong, D. Harris: Carbon Vol. 39 (2001), p.1821.

Google Scholar

[15] T. Cordero, J. Rodríguez Mirasol, J. Bedia, J.J. Rodríguez: Opt. Pura Apl. Vol. 40 (2007), p.161.

Google Scholar

[16] R. Silverstein, F.X. Webster, D. Kiemle. Identificação Espectrométrica de Compostos Orgânicos. (LTC 7. ed. Rio de Janeiro 2007).

Google Scholar

[17] T. Cordero, C. Duchamp, J.M. Chovelon, C. Ferronato, J. Matos: J. Photochem. Photobiol. A Vol. 191 (2007), p.122.

Google Scholar

[18] T. Cordero, J.M. Chovelon, C. Duchamp, C. Ferronato, J. Matos: Appl. Catal. B Vol. 73 (2007), p.227.

Google Scholar

[19] A.M. Asiri, M. S. Al-Amoudi, T. A. Al-Talhi, A. D. Al-Talhi: J. Saudi Chem. Soc. Vol. 15 (2011), p.121.

DOI: 10.1016/j.jscs.2010.06.005

Google Scholar