Preparation and Characterization of Tubular Composite Membranes and their Application in Water Flow Measurements

Article Preview

Abstract:

The latest technologies require materials with combination of properties that are not usually found in conventional materials. Organic-inorganic hybrid materials emerge as alternatives to the synthesis of low cost new functional materials. The constituent polymer-clay nanocomposites are intended effectively for the treatment of oily effluents. The removal of oily effluents was evaluated using composite membranes with different nanocomposite percentages, consisting of a mineral clay BrasgelTM smaller than 2 μm and ultra high molecular weight polyethylene. The sample of clay was characterized by X-Ray Diffraction (XRD) and Cation Exchange Capacity (CEC), while the membranes by scanning electron microscope (SEM). The produced composite membranes efficiencies were evaluated by continuous flow for 1 hour. The results clearly confirmed that membranes incorporated with a higher percentage of nanocomposites achieved greater stability and less time as assessed in water flow.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

263-268

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.R. Paul; L.M. Robeson: Polymer nanotechnology: Nanocomposites Polymer Vol. 49 (2008), p.3187.

DOI: 10.1016/j.polymer.2008.04.017

Google Scholar

[2] P.C. Lebaron, Z. Wang, T.J. Pinnavaia: Appl. Clay Sci. Vol. 15 (1999), p.11.

Google Scholar

[3] C.S. Ross, E.V. Shannon: J. Am. Ceram. Soc. Vol. 9 (1926), p.77.

Google Scholar

[4] G. Choudalakis, A. D. Gotsis: Eur. Polym. J. Vol. 45 (2009), p.967.

Google Scholar

[5] Y.Y. Zhou, X. Jin, H. Lin, Z.L. Chen: J. Chem. Eng. Vol. 166 (2011), p.176.

Google Scholar

[6] E.P. Oliveira, R.E. Santelli, R.J. Cassela: An. Chimic. Acta Vol. 545 (2005), p.85.

Google Scholar

[7] M. Mulder: Basic Principles of Membranes Technology. (Kluwer Academic Plubishers U.S. A: 1991).

Google Scholar

[8] T.L. Leal: Preparação e modificação de membranas tubulares de polietileno de ultra alto peso molecular (PEUAPM) sinterizadas. Tese, UFCG, Brasil, (2007).

Google Scholar

[9] M.F. Mota, M G. F. Rodrigues, F. Machado: Appl. Clay Sci. Vol. 99 (2014), p.237.

Google Scholar

[10] G.C. Oliveira, M.F. Mota, M.M. Silva, M.G.F. Rodrigues, H.M. Laborde: Braz. J. Petr. Gas Vol. 6 (2012), p.171.

Google Scholar

[11] S.C.G. Rodrigues, M.G.F. Rodrigues, K.R.O. Pereira, F.R. Valenzuela-Díaz: Braz. J. Petr. Gas Vol. 4 (2010), p.49.

Google Scholar

[12] M.F. Mota, Utilização de argilas esmectíticas modificadas na síntese de nanocompósitos poliméricos via polimerização in situ. Tese, UFCG, Brasil, (2015).

Google Scholar

[13] Souza Santos, P. Ciências e Tecnologia de Argilas. 2ª ed., Edgard Blücher Ltda, 1 (1989).

Google Scholar

[14] R.E. Grim. Clay Mineralogy. (International Series in the Earth and Planetary Sciences. McGraw-Hill, New York, 1968).

Google Scholar

[15] S.Y. Lee, S.J. Kim: Coll. Surf. A Physicochem. Eng. Aspects Vol. 211 (2002), p.19.

Google Scholar

[16] L.P. Ferreira, A.N. Moreira, F.G.S. Souza: Polímeros Vol. 24 (2014), p.604.

Google Scholar