Intercalation and Characterization of Kaolinite Amazon to Production Polymer Nanocomposites

Article Preview

Abstract:

Polymer nanocomposites using natural clays such as nanofiller have mechanical properties, flame-retardant, the gas barrier improvement compared to polymers without nanoclay. The aim of this work is intercalated molecules between the clay layers and characterize it with a view to its use in polymer nanocomposites. The kaolinite neat and modified used was characterized by fourier transform spectroscopy (FTIR), X-ray diffraction (XDR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetry (TGA). The results showed that kaolinite can be used as a nanofiller in polymer nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-273

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Sun, Y. Li, B. Zhang, X. Pan: Compos Sci Technol. Vol. 70 (2010), p.981.

Google Scholar

[2] J.C.M. Neto, R. Botan, L.M.F. Lona, J.E. Neto, W.A. Pippo: Polym. Bull. Vol. 72 (2015), p.387.

Google Scholar

[3] P.S. Santos: Tecnologia das Argilas: Fundamentos. (Edgard Blucher, Second ed. São Paulo, 1989).

Google Scholar

[4] A.C.V. Coelho, P.S. Santos, H. S Pantos: Quím. Nova Vol. 30 (2007), p.1282.

Google Scholar

[5] T. Itagakia, K. Kuroda: J. Mater. Chem. Vol. 13 (2003), p.1064.

Google Scholar

[6] J.E. Gardolinski, L.P. Ramos, G.P. Souza, F. Wypych: Colloid. Interf. Sci. Vol. 221 (2000), p.284.

Google Scholar

[7] H.A. Essawy: Colloid. Polym. Sci. Vol. 86 (2008), p.795.

Google Scholar

[8] R.L. Frost: Spectrochim. Acta A Vol. 59 (2003), p.1183.

Google Scholar

[9] T. Itagaki, Interlayer Organic Modification of 1: 1 Type Clay Mineral Kaolinite. Doctoral (Thesis). Tokyo, 2003. Waseda University. (JPN).

Google Scholar

[10] Y. Li, D. Sun, X. Pan, B. Zhang: Clay Clay Miner. Vol. 57 (2009), p.779.

Google Scholar

[11] H. Cheng, Q. Liu, J. Zhang, J. Yang, R. L Frost: J. Colloid Interf. Sci. and Interface Scienc Vol. 348 (2010), p.355.

Google Scholar

[12] C.T. Johnston, J.E. Kogel, D.L. Bish, T. Kogure, H.H. Murray: Clay Clay Miner. Vol. 56 (2008), p.470.

DOI: 10.1346/ccmn.2008.0560408

Google Scholar

[13] E.H. Faria, O.J. Lima, K.J. Ciuffi, E.J. Nassar, M.A. Vicente, R. Trujillano, P.S. Calefi: J. Colloid Interf. Sci. and Interface Sci. Vol. 335 (2009), p.210.

DOI: 10.1016/j.jcis.2009.03.067

Google Scholar

[14] D. Sun, Y. Li, B. Zhang, X. Pan: Compos. Sci. Technol. Vol. 70 (2010), p.981.

Google Scholar

[15] B. Zhang, Y. Li, X. PAN, X. Jia, X. Wang: J. Phys. Chem. Solids Vol. 68 (2007), p.135.

Google Scholar

[16] J. Du, G. Morris, R.A. Pushkarova, R. St Smart: Langmuir Vol. 26 (2010), p.13227.

Google Scholar

[17] J. Kameda, K. Saruwatari, D. Beaufort, T. Kogure: Eur. J. Mineral Vol. 20 (2008), p.199.

Google Scholar

[18] D.L. Guerra; V.L. Leidens; R.R. Viana; C. Airoldi: J. Hazard. Mater. Vol. 180 (2010), p.683.

Google Scholar

[19] T.A. Elbokl, Detellier, C. Christian: Interf. Sci. and Interface Sci. Vol. 323 (2008), p.338.

Google Scholar

[20] Y. Li, D. Sun, X. Pan, B. Zhang: Clay Clay Miner. Vol. 57 (2009), p.779.

Google Scholar