Effect on Structure and Properties of Cement-Based Materials by Polymer-Modified Metakaolin Slurry

Article Preview

Abstract:

It is not easy to disperse metakaolin in the cement concrete uniformly. The reunite phenomenon caused by lamellar structure and fine particles can reduce the properties of concrete. The fluidity of mortar were studied by recombining polyethylene glycol (PEG), sodium methyl-dinaphthalene sulfonate (NNO) and hydroxyethyl cellulose (HEC) with the metakaolin slurry, and then the internal structural properties of the different cement-based materials were analysed. The experimental results showed that when the ratio of MK and H2O was 35 : 65, the metakaolin slurry could reduce the adverse effect of metakaolin on the fluidity of mortar to a certain extent. The slurry prepared by P1N2H2, P2N1H2 and P2N1H1 composite dispersant dispersed more uniformly in the mortar than other groups. The hydration caused by these types of slurry during cement formation consumed Ca(OH)2 crystals sufficiently, which led to generating more dense C-S-H gel structure in the final cement-based materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1097-1103

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.M. Rashad, S.R. Zeedan, The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load, J. Constr. Build. Mater. 25 (2011) 98-107.

DOI: 10.1016/j.conbuildmat.2010.12.044

Google Scholar

[2] M. Frı́As, J. Cabrera, Pore size distribution and degree of hydration of metakaolin-cement pastes, J. Cem. Concr. Res. 30 (2000) 561-569.

DOI: 10.1016/s0008-8846(00)00203-9

Google Scholar

[3] Z. Li , Z. Ding, Property improvement of Portland cement by incorporating with metakaolin and slag, J. Cem. Concr. Res. 33 (2003) 579-584.

DOI: 10.1016/s0008-8846(02)01025-6

Google Scholar

[4] N. J. Coleman, C.L. Page, Aspects of the pore solution chemistry of hydrated cement pastes containing MK, J. Cem. Concr. Res. 27 (1997) 147-154.

DOI: 10.1016/s0008-8846(96)00184-6

Google Scholar

[5] S. Wild, J.M. Khabit, A. Jones, Relative strength pozzolanic activity and cement hydration in uperplasticised metakaolin concrete, J. Cem. Concr. Res. 26 (1996) 1537-1544.

DOI: 10.1016/0008-8846(96)00148-2

Google Scholar

[6] A.H. Asbridge, C.L. Page , M.M. Page, Effects of metakaolin, water/binder ratio and interfacial transition zones on the microhardness of cement mortars, J. Cem. Concr. Res. 32 (2002) 1365-1369.

DOI: 10.1016/s0008-8846(02)00798-6

Google Scholar

[7] M. Frias, J. Cabrera, Pore size distribution and degree of hydration of metakaolin-cement pastes, J. Cem. Concr. Res. 30 (2000) 561-569.

DOI: 10.1016/s0008-8846(00)00203-9

Google Scholar

[8] M.A. Caldarone, K.A. Gruber, R.G. Burg, High reactivity metakaolin: a new generation mineral admixture, J. Concrete Int. 11 (1994) 37-40.

Google Scholar

[9] B.B. Sabir, S. Wild, j. Bai, Metakaolin and cacined clays as Pozzolans for concrete: a review, J. Cem. Concr. Res. 23 (2001) 126-130.

Google Scholar

[10] F. Cassagnabere, M. Mouret, G. Escadeillas, Early hydration of clinker-slag-metakaolin combination in steam curing conditions, relation with mechanical properties, J. Cem. Concr. Res. 39 (2009) 1164-73.

DOI: 10.1016/j.cemconres.2009.07.023

Google Scholar

[11] C.S. Poon, L. Lam, S.C. Kou, Y.L. Wong, R. Wong, Rate of pozzolanic reaction of etakaolin in high-performance cement pastes, J. Cem. Concr. Res. 31 (2001) 1301-1306.

DOI: 10.1016/s0008-8846(01)00581-6

Google Scholar

[12] S. Wild, J. M. Khatib, A. Jones, Relative Strength, Pozzolanic Activity and Cement Hydration in Superplasticised Metakaolin Concrete, J. Cem. Concr. Res 26 (1996) 1537-1544.

DOI: 10.1016/0008-8846(96)00148-2

Google Scholar

[13] Z.H. Shui, T. Sun, Effect of metakaolin on ITZ microstructure of high-strength Concrete. J. Wuhan. Univ. Technol. 26 (2010) 849-852.

Google Scholar

[14] S. Wild, J. M. Khatib, L. J. Roose, Chemical shrinkage and autogenous shrinkage of Portland cement-metakaolin pastes, J. Adv. Cem. Res. 3 (1998) 109-119.

DOI: 10.1680/adcr.1998.10.3.109

Google Scholar

[15] C.C. Yang, S.W. Chob, L.C. Wang, The relationship between pore structure and chloride diffusivity from ponding test in cement-based materials, J. Mater. Chem. Phys. 100 (2006) 203-210.

DOI: 10.1016/j.matchemphys.2005.12.032

Google Scholar

[16] K.A. Gruber, T. Ramlochan, A. Boddy, R.D. Hooton, M.D.A. Thomas, Increasing concrete durability with high-reactivity metakaolin, J. Cem. Concr. Compos. 23 (2001) 479-484.

DOI: 10.1016/s0958-9465(00)00097-4

Google Scholar

[17] C.C. Yang, S.W. Cho, Approximate migration coefficient of percolated interfacial transition zone by using accelerated chloride migration test, J. Cem. Concr. Res. 35 (2005) 344-350.

DOI: 10.1016/j.cemconres.2004.05.038

Google Scholar

[18] A.A. Ramezanianpour, H.B. Jovein, Influence of metakaolin as Supplementary cementing material on strength and durability of concretes, J. Constr. Build. Mater. 30 (2012) 470-479.

DOI: 10.1016/j.conbuildmat.2011.12.050

Google Scholar

[19] E. Guneyisi, M. Gesoglu, K. Mermerdas, Improving strength drying shrinkage and pore structure of concrete using metakaolin, J. Mater. Struct. 41 (2008) 937-949.

DOI: 10.1617/s11527-007-9296-z

Google Scholar

[20] H. Paiva, A. Velosa, P. Cachim, V.M. Ferreira, Effect of metakaolin dispersion on the fresh and hardened state properties of concrete, J. Cem. Concr. Res. 42 (2012) 607-612.

DOI: 10.1016/j.cemconres.2012.01.005

Google Scholar