Interfacial Effect on Mechanical Properties of Polypropylene Ternary Nanocomposites

Article Preview

Abstract:

The matrix/filler interface plays a vital role in mechanical properties of polypropylene (PP)/rigid nanoparticles composites. In general, the use of spherical stearic acid modified CaCO3 (SA-CaCO3) can induce a weak interfacewhich facilitatesparticle debonding from the matrix under loading and reduces plastic resistance, enhancing the toughness of nanocomposites, while the use of polymer-grafted nanoparticles (PGS) can improve the Young’s modulus and yield stress because of strong interfacial binding between particle and matrix. With the objective to simultaneously improve the modulus, yield stress and toughness, the ternary nanocomposites, PP/PGS/CaCO3 (PPSC), were prepared and the morphology, crystallization, and mechanical behavior were investigated and compared to their binary nanocomposites. The results show that Young’s modulus is enhanced as the particle loading, and the yield stress is balanced by two interactions, i.e. the decreasing effect of the weak interface and the enhancement effect of the strong interface. The impact strength of the ternary nanocomposites shows insignificant improvement compared with neat PP, which is attributed to the brittle effect of the weak interface in the particle cluster of SA-CaCO3 and PGS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

564-570

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Galeski, Strength and toughness of crystalline polymer systems, Prog. Polym. Sci. 28 (2003) 1643-99.

Google Scholar

[2] C.M. Chan, J.S. Wu, J.X. Li and Y.K. Cheung, Polypropylene/calcium carbonate nanocomposites, Polymer, 43 (2002) 2981-92.

DOI: 10.1016/s0032-3861(02)00120-9

Google Scholar

[3] A.S. Argon, R.E. Cohen, Toughenability of polymers, Polymer, 44 (2003) 6013-32.

Google Scholar

[4] Y. Lin, Toughening mechanism of polypropylene/calcium carbonate nanocomposites, The Hong Kong University of Science and Technology, Thesis for Degree of Doctor of Philosophy, (2009) p.240.

Google Scholar

[5] Y. Lin, H.B. Chen, C.M. Chan, J.S. Wu, High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism, Macromolecules, 41 (2008) 9204-13.

DOI: 10.1021/ma801095d

Google Scholar

[6] E.J. Clark, J.D. Hoffman, Regime-iii crystallization in polypropylene, Macromolecules, 17 (1984) 878-85.

DOI: 10.1021/ma00134a058

Google Scholar

[7] S. Bruckner, S.V. Meille, V. Petraccone, B. Pirozzi, Polymorphism in isotactic polypropylene, Prog. Polym. Sci. 16 (1991) 361-404.

DOI: 10.1016/0079-6700(91)90023-e

Google Scholar

[8] T. Taniike, M. Toyonaga, M. Terano, Polypropylene-grafted nanoparticles as a promising strategy for boosting physical properties of polypropylene-based nanocomposites, Polymer, 55 (2014) 1012-19.

DOI: 10.1016/j.polymer.2014.01.016

Google Scholar

[9] Y. Lin, H.B. Chen, C.M. Chan, J.S. Wu, Nucleating effect of calcium stearate coated CaCO3 nanoparticles on polypropylene, J. Colloid Interface Sci. 354 (2011) 570-76.

DOI: 10.1016/j.jcis.2010.10.069

Google Scholar

[10] Y. Lin, H.B. Chen, C.M. Chan, J.S. Wu, Annealing-induced high impact toughness of polypropylene/CaCO3 nanocomposites, J. Appl. Polym. Sci. 124 (2012) 77-86.

DOI: 10.1002/app.35101

Google Scholar

[11] J. Way, J. Atkinson, J. Nutting, The effect of spherulite size on the fracture morphology of polypropylene, J. Mater. Sci. 9 (1974) 293-99.

DOI: 10.1007/bf00550954

Google Scholar

[12] R. Sharma, S.N. Maiti, Effects of crystallinity of polypropylene (PP) on the mechanical properties of pp/styrene-ethylene-butylene-styrene-g-maleic anhydride (sebs-g-ma)/teak wood flour (twf) composites, Polym. Bull. 72 (2015) 627-43.

DOI: 10.1007/s00289-014-1296-x

Google Scholar

[13] L. Ruiz-Perez, G.J. Royston, J.P.A. Fairclough, A.J. Ryan, Toughening by nanostructure, Polymer, 49 (2008) 4475-88.

DOI: 10.1016/j.polymer.2008.07.048

Google Scholar

[14] D. Maillard, S.K. Kumar, B. Fragneaud, J.W. Kysar, A. Rungta, B.C. Benicewicz, H. Deng, L. C. Brinson, J.F. Douglas, Mechanical properties of thin glassy polymer films filled with spherical polymer-grafted nanoparticles, Nano Letters, 12 (2012).

DOI: 10.1021/nl301792g

Google Scholar

[15] D. Meng, S. K. Kumar, S. Cheng, G.S. Grest, Simulating the miscibility of nanoparticles and polymer melts, Soft Matter. 9 (2013) 5417.

DOI: 10.1039/c3sm50460c

Google Scholar

[16] J. Lee, A.F. Yee, Fracture of glass bead/epoxy composites: On micro-mechanical deformations, Polymer, 41 (2000) 8363-73.

DOI: 10.1016/s0032-3861(00)00187-7

Google Scholar

[17] A. Hashemi, N. Jouault, G.A. Williams, D. Zhao, K.J. Cheng, J.W. Kysar, Z. Guan, S.K. Kumar, Enhanced glassy state mechanical properties of polymer nanocomposites via supramolecular interactions, Nano Letters, 15 (2015) 5465-71.

DOI: 10.1021/acs.nanolett.5b01859

Google Scholar

[18] D. Shah, P. Maiti, D.D. Jiang, C.A. Batt, E.P. Giannelis, Effect of nanoparticle mobility on toughness of polymer nanocomposites, Adv. Mater. 17 (2005) 525-9.

DOI: 10.1002/adma.200400984

Google Scholar

[19] Y. Lin, H.B. Chen, C.M. Chan, J.S. Wu, Effects of coating amount and particle concentration on the impact toughness of polypropylene/CaCO3 nanocomposites, Eur. Polym. J. 47 (2011) 294-304.

DOI: 10.1016/j.eurpolymj.2010.12.004

Google Scholar