Structures, Mechanical Properties and Band Structures of Pentagonal BxNy Monolayers

Article Preview

Abstract:

Stable structures of pentagonal BxNy monolayers of different stoichiometric ratios were investigated through density functional theory calculations. Combining the energy and phonon dispersion, two stable pentagonal BxNy structures, B2N4‒I and B3N3‒I, are predicted. Under uniaxial and biaxial tensile strains, B2N4‒I and B3N3‒I show anisotropy mechanical behaviours in terms of Young’s modulus and intrinsic strength. B2N4‒I possesses larger Young’s modulus (up to 206 N/m) and intrinsic strength (up to 40 GPa) compared with those of B3N3‒I. Particularly, due to the low symmetry and prominent anisotropy, uniaxial tensile strain can uniquely tailor the band gap and trigger the transition from a direct to an indirect band gap in semiconducting B3N3‒I.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

573-581

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Choi, J. -w. Lee, eds. Graphene: Synthesis and Applications, CRC Press, Boca Raton, (2011).

Google Scholar

[2] H. Aoki, M.S. Dresselhaus, eds. Physics of Graphene, Springer International Publishing, Switzerland, (2014).

Google Scholar

[3] S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, P. Natl. Acad. Sci. USA 112 (2015) 2372-2377.

Google Scholar

[4] H. Einollahzadeh, R.S. Dariani, S.M. Fazeli, Solid State Commun. 229 (2016) 1-4.

Google Scholar

[5] H. Einollahzadeh, S.M. Fazeli, R.S. Dariani, Sci. Technol. Adv. Mat. 17 (2016) 610-617.

Google Scholar

[6] T. Stauber, J.I. Beltrán, J. Schliemann, Sci. Rep. 6 (2016) 22672.

Google Scholar

[7] Z.G. Yu, Y. -W. Zhang, J. Appl. Phys. 118 (2015) 165706.

Google Scholar

[8] H. Sun, S. Mukherjee, C.V. Singh, Phys. Chem. Chem. Phys. 18 (2016) 26736-26742.

Google Scholar

[9] S.W. Cranford, Carbon 96 (2016) 421-428.

Google Scholar

[10] C.P. Ewels, X. Rocquefelte, H.W. Kroto, M.J. Rayson, P.R. Briddon, M.I. Heggie, P. Natl. Acad. Sci. USA 112 (2015) 15609-15612.

DOI: 10.1073/pnas.1520402112

Google Scholar

[11] X. Li, Y. Dai, M. Li, W. Wei, B. Huang, J. Mater. Chem. A 3 (2015) 24055-24063.

Google Scholar

[12] A. Lopez-Bezanilla, P.B. Littlewood, J. Phys. Chem. C 119 (2015) 19469-19474.

Google Scholar

[13] J. Li, X. Fan, Y. Wei, H. Liu, S. Li, P. Zhao, G. Chen, Sci. Rep. 6 (2016) 33060.

Google Scholar

[14] Y. Ma, L. Kou, X. Li, Y. Dai, T. Heine, NPG Asia Mater. 8 (2016) e264.

Google Scholar

[15] M. Yagmurcukardes, H. Sahin, J. Kang, E. Torun, F.M. Peeters, R.T. Senger, J. Appl. Phys. 118 (2015) 104303.

Google Scholar

[16] J. Li, X. Fan, Y. Wei, G. Chen, Sci. Rep. 6 (2016) 31840.

Google Scholar

[17] G. Kresse, J. Furthmüller, Comp. Mater. Sci. 6 (1996) 15-50.

Google Scholar

[18] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.

Google Scholar

[19] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953.

Google Scholar

[20] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.

Google Scholar

[21] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.

Google Scholar

[22] A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78 (2008) 134106.

Google Scholar

[23] L. Liu, J. Zhang, J. Zhao, F. Liu, Nanoscale 4 (2012) 5910-5916.

Google Scholar

[24] Q. Peng, W. Ji, S. De, Nanoscale 5 (2013) 695-703.

Google Scholar