Interfacial Microstructure and Formation Mechanism of Zirconia Ceramic and Nb Brazed with Ag-Cu-Ti Powder without and with Mo-Particle-Reinforced

Article Preview

Abstract:

Zirconia (ZrO2) ceramic and Nb were brazed using Ag-Cu-Ti powder without and with Mo-particle-reinforced. The effects of the brazing temperature, holding time and Mo content of the composite filler on the interfacial microstructures and joining mechanism of ZrO2/Nb brazed joints were investigated. By increasing the brazing temperature and holding time, the thickness of Ti3Cu3O layer increased and the thickness of TiO layer decreased, while the total thickness of the reaction layers increased slightly with the sufficient interfacial reaction. Meanwhile, the blocky Ti-Cu compounds gradually accumulate and grow up in the brazing seam. The calculated Ti activity increased first and then decreased as the Mo content was increased from 5 to 40 wt%. When the Mo content was 5wt%, only single Ti3Cu3O reaction layers formed adjacent to the ceramic substrate. By increasing of Mo particles, TiO layer became thicker. When 40 wt% Mo particles were added to the composite filler, Mo particles aggregated into larger clumps damaged the shear strength of brazing joint.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

542-550

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.W. Liu, G.J. Qiao, H.J. Wang, J.F. Yang, T.J. Lu, Pressureless brazing of zirconia to stainless steel with Ag-Cu filler metal and TiH2 powder, J. Eur. Ceram. Soc. 28 (2008) 2701-2708.

DOI: 10.1016/j.jeurceramsoc.2008.04.008

Google Scholar

[2] M. Singh, T. P. Shpargel, R. Asthana, Brazing of stainless steel to yttria-stabilized zirconia using gold-based brazes for solid oxide fuel cell applications, Int. J. Appl. Ceram. Tec. 4 (2007) 119-133.

DOI: 10.1111/j.1744-7402.2007.02126.x

Google Scholar

[3] J.A. Fernie, R.A.L. Drew, K.M. Knowles, Joining of engineering ceramics, Int. Mater. Rev. 54 (2009) 283-331.

Google Scholar

[4] R.M. Ormerod, Solid oxide fuel cells, Chem. Soc. Rev. 32 (2003) 17-28.

Google Scholar

[5] H.Q. Hao, Y.L. Wang, Z.H. Jin, X.T. Wang, Joining of zirconia to zirconia using Ag-Cu-Ti filler metal, J. Mater. Process. Technol. 52 (1995) 238-247.

DOI: 10.1016/0924-0136(94)01611-4

Google Scholar

[6] T.H. Chuang, M.S. Yeh, Y.H. Chai, Brazing of zirconia with AgCuTi and SnAgTi active filler metals, Metall. Mater. Trans. A 31 (2000) 1591-1597.

DOI: 10.1007/s11661-000-0169-0

Google Scholar

[7] J. Zhang, Y.M. He, Y. Sun, C.F. Liu, Microstructure evolution of Si3N4/Si3N4 joint brazed with Ag-Cu-Ti + SiCp composite filler, Ceram. Int. 36 (2010) 1397-1404.

DOI: 10.1016/j.ceramint.2010.02.010

Google Scholar

[8] G. Blugan, J. Kuebler, V. Bissig, J. Janczak-Rusch, Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy, Ceram. Int. 33 (2007) 1033-1039.

DOI: 10.1016/j.ceramint.2006.03.010

Google Scholar

[9] Y.X. Zhao, M.R. Wang, J. Cao, X.G. Song, D.Y. Tang, J.C. Feng, Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler, Mater. Des. 76 (2015) 40-46.

DOI: 10.1016/j.matdes.2015.03.046

Google Scholar

[10] T.P. Wang, Toni Ivas, Christian Leinenbach, J. Zhang, J. Alloys Compd. 651 (2015) 623-630.

Google Scholar

[11] J. Roger, F. Audubert, Y.L. Petitcorps, Thermal effect of TiC in the Mo/TiC/SiC system at elevated temperature, J. Alloys Compd. 496 (2010) 244-250.

DOI: 10.1016/j.jallcom.2009.12.158

Google Scholar

[12] Q.W. Qiu, Y. Wang, Z.W. Yang, X. Hu, D.P. Wang, Mater. Des. 90 (2016) 650-659.

Google Scholar

[13] Y.M. He, J. Zhang, Y. Sun, C.F. Liu, J. Eur. Ceram. Soc. 30 (2010) 3245-3251.

Google Scholar

[14] C.D. Qin, N.A. James, B. Derby, Palladium-zirconia diffusion bonds: Mechanical properties and interface reactions, Acta Mater. 40 (1992) 925-938.

DOI: 10.1016/0956-7151(92)90069-q

Google Scholar

[15] W.B. Hanson, K.I. Ironside, J.A. Fernie, Active metal brazing of zirconia, Acta Mater. 48 (2000) 4673-4676.

DOI: 10.1016/s1359-6454(00)00256-1

Google Scholar

[16] J.C. Feng, X.Y. Dai, D. Wang, R. Li, J. Cao, Microstructure evolution and mechanical properties of ZrO2/TiAl joints vacuum brazed by Ag-Cu filler metal, Mater. Sci. Eng. A 639 (2015) 739-746.

DOI: 10.1016/j.msea.2015.05.059

Google Scholar

[17] C. Valette, M.F. Devismes, R. Voytovych, N. Eustathopoulos, Interfacial reactions in alumina/CuAgTi braze/CuNi system, Scripta Mater. 52 (2005) 1-6.

DOI: 10.1016/j.scriptamat.2004.09.008

Google Scholar

[18] A.V. Durov, Y.V. Naidich, B.D. Kostyuk, Investigation of interaction of metal melts, J. Mater. Sci. 40 (2005) 2173-2178.

DOI: 10.1007/s10853-005-1928-5

Google Scholar

[19] J.J. Stephens, F.M. Hosking, T.J. Headley, P.F. Hlava, F.G. Host, Reaction layers and mechanisms for a Ti-activated braze on sapphire, Metall. Mater. Trans. A 34 (2003) 2963-2972.

DOI: 10.1007/s11661-003-0195-9

Google Scholar

[20] J.L. Murray, The Cu-Ti (copper-titanium) system, J. Phase Equil. 4 (1983) 81-95.

Google Scholar

[21] A.R. Miedema, A.K. Niessen, The enthalpy of solution for solid binary alloys of two 4d-transition metals, Calphad. 7 (1983) 27-36.

DOI: 10.1016/0364-5916(83)90027-5

Google Scholar

[22] K.C. Chou, A general solution model for predicting ternary thermodynamic properties, Calphad. 19 (1995) 315-325.

DOI: 10.1016/0364-5916(95)00029-e

Google Scholar

[23] K.C. Chou, Y.A. Chang, A Study of Ternary Geometrical Models, Ber. Bunsenges. Phys. Chem. 93 (1989) 735-741.

Google Scholar

[24] N.A. Gokcen, Statistical thermodynamics of alloys. New York: Plenum Press, (1986) 255-261.

Google Scholar